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Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.
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Extreme she occupations
1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist
10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations
1. maestro 2. skipper 3. protege
4. philosopher 5. captain 6. architect
7. financier 8. warrior 9. broadcaster
10. magician 11. figher pilot 12. boss

Figure 1: The most extreme occupations as projected on to the she�he gender direction on g2vNEWS.
Occupations such as businesswoman, where gender is suggested by the orthography, were excluded.

Gender stereotype she-he analogies.
sewing-carpentry register-nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

Figure 2: Analogy examples. Examples of automatically generated analogies for the pair she-he using the
procedure described in text. For example, the first analogy is interpreted as she:sewing :: he:carpentry in the
original w2vNEWS embedding. Each automatically generated analogy is evaluated by 10 crowd-workers are
to whether or not it reflects gender stereotype. Top: illustrative gender stereotypic analogies automatically
generated from w2vNEWS, as rated by at least 5 of the 10 crowd-workers. Bottom: illustrative generated
gender-appropriate analogies.

softball extreme gender portion after debiasing
1. pitcher -1% 1. pitcher
2. bookkeeper 20% 2. infielder
3. receptionist 67% 3. major leaguer
4. registered nurse 29% 4. bookkeeper
5. waitress 35% 5. investigator

football extreme gender portion after debiasing
1. footballer 2% 1. footballer
2. businessman 31% 2. cleric
3. pundit 10% 3. vice chancellor
4. maestro 42% 4. lecturer
5. cleric 2% 5. midfielder

Figure 3: Example of indirect bias. The five most extreme occupations on the softball-football axis, which
indirectly captures gender bias. For each occupation, the degree to which the association represents a gender
bias is shown, as described in Section 5.3.
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Figure 7: Selected words projected along two axes: x is a projection onto the difference between the
embeddings of the words he and she, and y is a direction learned in the embedding that captures gender
neutrality, with gender neutral words above the line and gender specific words below the line. Our hard
debiasing algorithm removes the gender pair associations for gender neutral words. In this figure, the words
above the horizontal line would all be collapsed to the vertical line.

����!
softball �

�����!
football) are shown in the table. Words such as receptionist, waitress and homemaker are closer to

softball than football, and the �’s between these words and softball is substantial (67%, 35%, 38%, respectively).
This suggests that the apparent similarity in the embeddings of these words to

����!
softball can be largely explained

by gender biases in the embedding. Similarly, businessman and maestro are closer to football and this can
also be attributed largely to indirect gender bias, with �’s of 31% and 42%, respectively.

6 Debiasing algorithms

The debiasing algorithms are defined in terms of sets of words rather than just pairs, for generality, so that
we can consider other biases such as racial or religious biases. We also assume that we have a set of words to
neutralize, which can come from a list or from the embedding as described in Section 7. (In many cases it
may be easier to list the gender specific words not to neutralize as this set can be much smaller.)

The first step, called Identify gender subspace, is to identify a direction (or, more generally, a subspace)
of the embedding that captures the bias. For the second step, we define two options: Neutralize and
Equalize or Soften. Neutralize ensures that gender neutral words are zero in the gender subspace.
Equalize perfectly equalizes sets of words outside the subspace and thereby enforces the property that any
neutral word is equidistant to all words in each equality set. For instance, if {grandmother, grandfather} and
{guy, gal} were two equality sets, then after equalization babysit would be equidistant to grandmother and
grandfather and also equidistant to gal and guy, but presumably closer to the grandparents and further from
the gal and guy. This is suitable for applications where one does not want any such pair to display any bias
with respect to neutral words.

The disadvantage of Equalize is that it removes certain distinctions that are valuable in certain applications.
For instance, one may wish a language model to assign a higher probability to the phrase to grandfather a
regulation) than to grandmother a regulation since grandfather has a meaning that grandmother does not –
equalizing the two removes this distinction. The Soften algorithm reduces the differences between these sets
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Machine learning is a means to derive artificial intelligence by discovering pat-

terns in existing data. Here we show that applying machine learning to ordi-

nary human language results in human-like semantic biases. We replicate a

spectrum of known biases, as measured by the Implicit Association Test, using

a widely used, purely statistical machine-learning model trained on a standard

corpus of text from the Web. Our results indicate that text corpora contain re-

coverable and accurate imprints of our historic biases, whether morally neu-

tral as towards insects or flowers, problematic as towards race or gender, or

even simply veridical, reflecting the status quo distribution of gender with re-

spect to careers or first names. Our methods hold promise for identifying and

addressing sources of bias in culture, including technology.

Introduction

We show that standard machine learning can acquire stereotyped biases from textual data that

reflect everyday human culture. The general idea that text corpora capture semantics including

cultural stereotypes and empirical associations has long been known in corpus linguistics (1,2),

but our findings add to this knowledge in three ways. First, we use word embeddings (3), a

these is complex and may be mutually reinforcing (11).
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Figure 1: Occupation-gender association.
Pearson’s correlation coefficient ⇢ = 0.90
with p-value < 10�18.
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Figure 2: Name-gender association.
Pearson’s correlation coefficient ⇢ = 0.84
with p-value < 10�13.

To better understand the relationship, we examine the correlation between the gender asso-

ciation of occupation words and labor-force participation data. The x-axis of Figure 1 is derived

from 2015 data released by the U.S. Bureau of Labor Statistics (http://www.bls.gov/cps/cpsaat11.htm),

which provides information about occupational categories and the percentage of women that

have certain occupations under these categories. By applying a second method that we devel-

oped, Word Embedding Factual Association Test, (WEFAT), we find that GloVe word embed-

dings correlate strongly with the percentage of women in 50 occupations in the USA in 2015.

Similarly, we looked at the veridical association of gender to androgynous names, that is,

names used by either gender. In this case, the most recent information we were able to find was

the 1990 census name and gender statistics. Perhaps because of the age of our name data, our

correlation was weaker than for the 2015 occupation statistics, but still strikingly significant. In

Fig 2, the x-axis is derived from the 1990 U.S. census data (http://www.census.gov/main/www/cen1990.html),

and the y-axis is as before.
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Target words Attrib. words Original Finding Our Finding
Ref N d p NT NA d p

Flowers vs
insects

Pleasant vs
unpleasant (5) 32 1.35 10�8 25⇥2 25⇥2 1.50 10�7

Instruments vs
weapons

Pleasant vs
unpleasant (5) 32 1.66 10�10 25⇥2 25⇥2 1.53 10�7

Eur.-American
vs Afr.-American

names

Pleasant vs
unpleasant (5) 26 1.17 10�5 32⇥2 25⇥2 1.41 10�8

Eur.-American
vs Afr.-American

names

Pleasant vs
unpleasant
from (5)

(7) Not applicable 16⇥2 25⇥2 1.50 10�4

Eur.-American
vs Afr.-American

names

Pleasant vs
unpleasant
from (9)

(7) Not applicable 16⇥2 8⇥ 2 1.28 10�3

Male vs female
names

Career vs
family (9) 39k 0.72 < 10�2 8⇥ 2 8⇥ 2 1.81 10�3

Math vs arts Male vs
female terms (9) 28k 0.82 < 10�2 8⇥ 2 8⇥ 2 1.06 .018

Science vs arts Male vs
female terms (10) 91 1.47 10�24 8⇥ 2 8⇥ 2 1.24 10�2

Mental vs
physical disease

Temporary vs
permanent (23) 135 1.01 10�3 6⇥ 2 7⇥ 2 1.38 10�2

Young vs old
people’s names

Pleasant vs
unpleasant (9) 43k 1.42 < 10�2 8⇥ 2 8⇥ 2 1.21 10�2

Table 1: Summary of Word Embedding Association Tests. We replicate 8 well-known IAT
findings using word embeddings (rows 1–3 and 6–10); we also help explain prejudiced human
behavior concerning hiring in the same way (rows 4 and 5). Each result compares two sets of
words from target concepts about which we are attempting to learn with two sets of attribute

words. In each case the first target is found compatible with the first attribute, and the second
target with the second attribute. Throughout, we use word lists from the studies we seek to
replicate. N : number of subjects. NT : number of target words. NA: number of attribute words.
We report the effect sizes (d) and p-values (p, rounded up) to emphasize that the statistical
and substantive significance of both sets of results is uniformly high; we do not imply that our
numbers are directly comparable to those of human studies. For the online IATs (rows 6, 7, and
10), p-values were not reported, but are known to be below the significance threshold of 10�2.
Rows 1–8 are discussed in the text; for completeness, this table also includes the two other IATs
for which we were able to find suitable word lists (rows 9 and 10).
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ABSTRACT
Word embeddings are a widely used set of natural language process-
ing techniques that map words to vectors of real numbers. These
vectors are used to improve the quality of generative and predictive
models. Recent studies demonstrate that word embeddings con-
tain and amplify biases present in data, such as stereotypes and
prejudice. In this study, we provide a complete overview of bias in
word embeddings. We develop a new technique for bias detection
for gendered languages and use it to compare bias in embeddings
trained on Wikipedia and on political social media data. We investi-
gate bias di�usion and prove that existing biases are transferred to
further machine learning models. We test two techniques for bias
mitigation and show that the generally proposed methodology for
debiasing models at the embeddings level is insu�cient. Finally,
we employ biased word embeddings and illustrate that they can
be used for the detection of similar biases in new data. Given that
word embeddings are widely used by commercial companies, we
discuss the challenges and required actions towards fair algorithmic
implementations and applications.
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1 INTRODUCTION
The growing ubiquity of algorithms in society poses questions
about their social, political, and ethical consequences [77]. One of
the issues research focuses on is algorithmic bias, which denotes the
deviation of the algorithmic results from speci�c social expectations,
based on epistemic or normative reasons [75].

Prior research has shown that algorithmic bias might result in
unfair or discriminative decisions and statements, initiating a multi-
level debate on the ethical use of algorithms [62, 102]. Under that
framework, researchers, decision makers and institutions try to
answer the following questions:

• What de�nitions of fairness and discrimination are appro-
priate and under what conditions? [15, 62]

• At which part of an algorithm does bias emerge and in what
form? [42, 85, 93]

• What are the actual consequences of biased algorithms and
who is accountable for them? [6, 68, 76]

• How can researchers and decision makers mitigate the de-
tected bias? [8, 13]

Problem Statement
This study investigates bias in word embeddings, a set of natural

language processing techniques for the mapping of words into nu-
merical vectors. These vectors can then be used for the improvement
of the predictions and inferences of other machine learning models
[91]. Previous work has proven that word embeddings contain bias
[13], and researchers have already developed methodologies for
tracing, quantifying, andmitigating it [12, 16]. Recently, researchers
have also started to develop methods for comparing biases existing
in di�erent datasets [40, 64].

Despite recent scienti�c �ndings, computer scientists in the in-
dustry widely use word embeddings for the development of highly
accurate models that perform text generation, translation, classi�-
cation and regression, without taking into consideration the impact
of their inherent biases. Similarly, researchers have not yet inves-
tigated the di�usion and impact of biased word embeddings on
further machine learning algorithms. Therefore, we want to pro-
vide a complete overview of bias in word embeddings: its detection
in the embeddings, its di�usion in algorithms using the embed-
dings, and its mitigation at the embeddings level and at the level
of the algorithm that uses them. We also investigate whether the
employment of biased word embeddings contributes to the location
of the bias in new data. The study raises additional awareness about
a technique, whose implementation can lead to unfair algorithmic
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trained on the sexism dataset. Furthermore, we investigate which
properties of the word embeddings are responsible for accuracy
improvement. For that, we transformed and compared the word
embeddings from the sexism dataset to the other embeddings by
calculating their mean weighted cosine similarities, as given by the
equation

Sims ,i =

NÕ
n=1

fncos( Æwn,s , Æwn,i )

NÕ
n=1

fn

, with n = 1, ...,N 2 s \ i,

where s is the word embeddings trained on the sexism dataset, i
is another word embeddings dataset, N is the number of common
words in the two datasets and fn is the frequency of appearance
of a common word n in the sexism dataset. We also perform the
sentiment task with the sexism dataset embeddings and calculate
the level and type of sexist prejudice within them.

4 RESULTS
The results are split into three parts. First, we present our �ndings
on bias within the Wikipedia and social media word embeddings.
Second, we analyze how the bias was di�used and howwemitigated
it. We also illustrate the e�ciency of biased word embeddings when
used as sexism detection models. In the last part of the section, we
evaluate bias in word embeddings.

4.1 Bias in Word Embeddings
The word embeddings generated on theWikipedia and social media
corpora contained 390,000 and 200,000 vectors respectively. In both
cases, the profession and sentiment task revealed intensive stereo-
typical features assigned to each examined social group. In both
Wikipedia and social media spaces, women were mostly associated
with professions like nurses and secretaries. On the other hand,
men were associated with stereotypical male roles, like policemen
and commanders. The aforementioned assigned professions highly
correlate with the actual profession distribution in society [1], de-
noting that the actual social asymmetry is imprinted in the vectors.
For Wikipedia, women were strongly associated with concepts re-
lated to marriage, while men were linked to concepts related to war
and power. This could be because Wikipedia extensively includes
biographies of historical �gures, in which women are typically
associated with marriage and familial relations, while men are as-
sociated with concepts such as war and governance [95, 96]. In
social media, the female sex was closer to positive feelings such as
love and maturity, but also to negative ones like stubbornness and
agitation. Men were closer to concepts related to aggression and
�ghting, with most of them being negative. The stereotypes found
in the social media dataset comply with previous research �ndings
[99], which found the existence of power related stereotypes for
men and sentiment related stereotypes for women.

In both Wikipedia and social media, Germans were intensively
associated with jobs related to governance and journalism, while
foreigners either to blue collar jobs or to professionals dealing with
foreign populations such as aid o�cials, politicians or tour guides.
Foreigners were generally linked to sentiment concepts related to

immigration, law and crime, while Germans to positive feelings
such as charm and passion (social media), as well as to cooperation
and union (Wikipedia). The association of foreigners to immigration
related concepts and professions can be traced back to the refugee
crisis taking place in Europe over the last few years, which has a
prominent position in the public agenda [65]. Similarly, researchers
have proven the existence of biased slants related to immigration
issues on wikipedia [48]. Given that both German Wikipedia and
the German social media discussions are primarily produced by
Germans, we can attribute the inherent positivity and negativity
on Germans and foreigners on the intergroup prejudice existing in
the society [2, 72]

Table 2: Extreme words for each task and group using the
embeddings from Wikipedia data

Wikpedia
Sexist prejudice

Profession Sentiment
Woman Man Woman Man
Nurse

Secretary
Teacher

Saleswoman
Actress

O�cer
Hunter

Commander
Guard

Cameraman

Wedding
Divorce
Anulment
Engagement

Marry

Reinforcement
Attack
Combat
Power

Decrease
Population Prejudice

Profession Sentiment
Foreigners German Foreigners German
Aid o�cial
Craftsman

Bank Assistant
Tour guide
Foreman

Author
Journalist
Historian
Director
Painter

Refugee
Unauthorized

Lawful
Tax

Accumulate

Champion
Cooperation

Union
New

Assignment
Sexual Orientation Prejudice

Profession Sentiment
Homosexuality Heterosexuality Homosexuality Heterosexuality

Artist
Art dealer
Actress
Cook

Shoemaker

Singing teacher
Copywriter

Forest manager
Track driver
Carpenter

Corruption
Violence
Adultery
Known

Prohibited

Unserious
Nice

Fantastic
Smart
Fair

The stereotypes were equally intensive for sexual orientation.
Homosexuals were related to stereotypical roles such as artists
(Wikipedia) and hairdressers (social media), while persons of het-
erosexual orientation were related to blue collar professions or
positions in science. Strikingly, homosexuality was related in both
datasets with very negative concepts: from violence, prohibition
and adultery (Wikipedia), to death sentencing, abuse and harass-
ment (social media). On the complete opposite side, heterosexuality
was closely positioned to inherently positive sentiments such as
fantastic and smart (Wikipedia) and to concepts like friendship and
deliberation (social media). These �ndings comply with historic
negative social attitudes against homosexuality, where conservative
groups state that it is abnormal and that should be prohibited by
law [26]. Regarding positive concept relations to homosexuality,
researchers have found similar associations in concept association
tests [94], illustrating that biases in social media and wikipedia
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Table 3: Extreme words for each task and group using the
embeddings from social media data

Social Media
Sexist prejudice

Profession Sentiment
Woman Man Woman Man
Nurse

Secretary
Pharmacist

Religion teacher
Correspondent

Policeman
Musician
Priest
Coach

Paramedic

Agitation
Mature
Love

Increase
Stubborness

Robber
Attacker
Injured
Fascist

Overwhelmed
Population Prejudice

Profession Sentiment
Foreigners German Foreigners German
Newspaper

Skilled worker
Politician
Consultant
Teacher

Government O�cial
Correspondent

Notary
Butler

Reporter

Criminal
Exclude
Refugee
Increase

Frustration

Mature
Beauty
Charm
Passion
Love

Sexual Orientation Prejudice
Profession Sentiment

Homosexuality Heterosexuality Homosexuality Heterosexuality
Artist

Scrap dealer
Hairdresser
Interviewer
Consultant

Streetworker
Political scientist
Political economist

Mediator
Biologist

Death sentence
Discrimination

Abuse
Harassment
Violence

Friendly
Moving

Deliberation
Increasing
Unecessary

correspond to the ones found o�ine. An overview of the most ex-
treme concept associations for all groups can be found in tables 2
and 3. The results demonstrate strong stereotypical associations
for all groups. Overall, the calculated general bias was higher for
almost all categories and tasks for the Wikipedia dataset (table 4),
denoting that Wikipedia introduces more severe stereotypes for
each social group than the examined social media content. The
calculated scores are of similar magnitude to those calculated by
Bolukbasi et al. [13], who calculated a general bias of 0.08 on the
profession task for the two sexes on an English Google news corpus.

Table 4: General bias for each intergroup comparison, bias
task and embeddings dataset.

Wikipedia Social Media
Profession Sentiment Profession Sentiment

Sex 0.080 0.087 0.077 0.037
Population 0.066 0.063 0.054 0.056

Sex orientation 0.064 0.087 0.0619 0.084

The presented associations only reveal partial bias in the embed-
dings. Indeed, stereotypes are a base of social discrimination, and
someone can qualitatively evaluate how speci�c social groups are
presented in the datasets by checking the mostly associated con-
cepts. Nevertheless, this does not per se signify that a speci�c group
is generally favored over another, which would provide evidence
of prejudice. To achieve that, we calculated the mean polarity score
for the sentiment concepts being closer to each social group, and
then extracted the di�erence for each intergroup comparison. The
results are given in Figure 1. For both Wikipedia and social media,
Germans were depicted much more positively than foreigners. The

Figure 1: Intergroup positive sentiment di�erence in the em-
beddings.

same applies for heterosexuals in comparison to homosexuals. Both
results are in accordance to the sentiment task results, as Germans
and heterosexuals were associated with much more positive feel-
ings and concepts, con�rming the existence of biases that favor
privileged social groups [26, 50].

In German Wikipedia, men were generally depicted more posi-
tively. On the other hand, in the social media dataset, women were
associated with more positive words. One explanation is that in
Wikipedia men were described by stereotypical concepts like power,
attack and reinforcement, which are labeled as positive in the polar-
ity dictionary. In contrast, the social media data also related men to
concepts like fascism and robbery, i.e. words with highly negative
sentiment. That could also be rooted in the nature of German lan-
guage, which uses the male plural when making colloquial general
claims. Because negative statements about groups on social media
were generated in a male form, this bias could have been replicated
by the model. Furthermore, the sentiment di�erence does not fully
replicate bias in text. For example, in social media data, women are
often associated with the term ‘mother’, for which the sentiment
lexicon assigns a positive score. Nevertheless, the actual combina-
tion of words in a political context corresponds to sexist speech, as
numerous users refer to female politicians as mothers in order to
undermine their political abilities.

The above results illustrate that word embeddings contain a high
level of bias in them in terms of group stereotypes and prejudice.
The intergroup comparison between sexes, populations, and sex-
ual orientations revealed the existence of strong stereotypes and
unbalanced evaluations of groups. Although Wikipedia contained
stronger bias in terms of stereotypes, social media contained a
higher bias in terms of group prejudice.

4.2 Bias Di�usion, Mitigation & Prediction
Our analysis shows that the above bias was di�used further into
the trained sentiment classi�ers. We trained one classi�er for each
embedding dataset, with both having a test set accuracy of around

452



Bias in Word Embeddings FAT* ’20, January 27–30, 2020, Barcelona, Spain

Table 3: Extreme words for each task and group using the
embeddings from social media data

Social Media
Sexist prejudice

Profession Sentiment
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Secretary
Pharmacist

Religion teacher
Correspondent

Policeman
Musician
Priest
Coach

Paramedic

Agitation
Mature
Love

Increase
Stubborness

Robber
Attacker
Injured
Fascist

Overwhelmed
Population Prejudice

Profession Sentiment
Foreigners German Foreigners German
Newspaper

Skilled worker
Politician
Consultant
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Government O�cial
Correspondent

Notary
Butler

Reporter

Criminal
Exclude
Refugee
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Frustration
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Beauty
Charm
Passion
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Sexual Orientation Prejudice
Profession Sentiment
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Scrap dealer
Hairdresser
Interviewer
Consultant

Streetworker
Political scientist
Political economist

Mediator
Biologist

Death sentence
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Abuse
Harassment
Violence

Friendly
Moving

Deliberation
Increasing
Unecessary
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Table 4: General bias for each intergroup comparison, bias
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Figure 1: Intergroup positive sentiment di�erence in the em-
beddings.
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Figure 2: Predicted score of the sentiment classi�er for
stereotypical names of di�erent populations

85%. The classi�cation task for stereotypical names of di�erent
communities illustrated a preference for German names (Figure
2). In both embedding datasets, German names were assigned the
highest average sentiment score. In contrast, most of the foreign
names were assigned negative sentiment values. Arabic and Rus-
sian names were negatively associated in both datasets, which can
be grounded both on existing social stereotypes against Russians
and Arabs in the society [5, 7], as well as mainstream media rep-
resentations of the ethnicities [55, 66]. Greek, Polish and Turkish
names were seen much more positively by the social media classi-
�er. This comes in contrast to what someone would actually expect,
since a large part of contemporary German public opinion holds
strong negative stereotypes against Greek, Polish and Turkish pop-
ulations due to economic and migration issues [5, 11, 63]. French
and US-American stereotypical names were classi�ed much more
positively by the Wikipedia classi�er. The result related to French
names was not intuitive, given the historical con�icts between Ger-
many and France that are extensively covered in Wikipedia [57]. In
contrary, researchers illustrate that non-English Wikipedia pages
on U.S.-American persons generally contain positive cues [18],
explaining also the favoritism of the classi�er for U.S.-American
names. Overall, the classi�ers’ social discrimination biases for the
models trained on the Wikipedia and the social media data were
Bc ,wiki = 0.23 and Bc ,sm = 0.14 respectively. The bias of the clas-
si�er was similar to the bias in the embeddings, as in both cases
German concepts were evaluated much more positively. For both
classi�ers the Kruskal–Wallis tests were signi�cant (sm classi�er:
H=101.95, p-value: <0.01; wiki classifer: H=37.36, p-value < 0.01),
denoting that the mean bias for each ethnicity varies signi�cantly
from the others.

We concluded with similar �ndings when predicting the senti-
ment of male and female names. The classi�ers exactly replicated
the prejudice as measured in the word embeddings (Figure 4). The
Wikipedia classi�er predicted a higher average sentiment score for
male names. In contrast, the social media classi�er assigned a much
more positive overall score to female names. This complies with

Figure 3: Bias in the sentiment classi�er for stereotypical
names of various populations after mitigation at (a) the em-
beddings’ level, (b) the level of the classi�er.

the results from the intergroup positive sentiment di�erence in
the embeddings, where women were associated with more positive
concepts than men in the social media dataset, while the opposite
happened in the Wikipedia embeddings. Hence, we proved that
classi�ers trained in biased word embeddings replicate the bias
existing in the vectors. Overall, the classi�ers’ social discrimination
biases were Bc ,wiki = 0.011 and Bc ,sm = 0.068 respectively. The
Mann-Whitney U test was signi�cant for the social media classi�er
(U = 1027471, p-value < 0.01), but not for the Wikipedia classi�er
(U = 1069947, p-value = 0.23). This does not mean that there is no
bias between sexes in the second case. By breaking down names
by ethnicity and comparing them, we get signi�cant results for
German (U = 91356, p-value = 0.001), Polish (U = 19, p-value =
0.01), Greek (U = 90, p-value = 0.003) and U.S.-American (U = 63128,
p-value = 0.02) names.

The study proves that the di�used bias can be mitigated. Both
methodologies for bias mitigation reduced bias signi�cantly. Mit-
igation at the embeddings level resulted in social discrimination
biases of the classi�ers of Bc ,wiki = 0.027 and Bc ,sm = 0.035 for
the population comparison. Similarly, when predicting the senti-
ment of male and female names, the bias of the classi�ers after
mitigation was Bc ,wiki = 0.009 and Bc ,sm = 0.018 respectively.
Mitigation at the level of the classi�er was by far more e�cient: In
all possible tasks, the overall social discrimination bias vanished.
Figure 4 presents an overview of bias before and after mitigation for
each case. In order to understand why the second methodology pro-
vides better results, we calculated the cosine distance between the
sentiment vectors of the embeddings and the classi�er, which were
used for de-biasing. The value was close to 0.9, denoting that the
classi�er actually learns a signi�cantly di�erent sentiment direction
than the one de�ned by the methodology proposed by Bolukbasi et
al.[13]. Actually, the classi�er learns further associations between
the vectors, which are not taken into consideration when debias-
ing at the embeddings level. Debiasing at the embeddings level
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Figure 4: Predicted score of the sentiment classi�er for male
and female names, before and after mitigation by applying
two di�erent methods.

results in the di�usion of a di�erent bias in the classi�er. As Figure
3 shows, although bias related to the favored group was highly
reduced, remaining patterns in the data resulted in a totally di�er-
ent bias di�usion. This bias was not universally distributed in all
cases, but resulted in asymmetries in certain cases. For example,
for the classi�er trained on the Wikipedia embeddings the mean
bias di�erence between German and Russian (U = 23363, p-value
= 0.065), Arabic (U = 90, p-value = 0.045) and Italian (U = 86625,
p-value = 0.065) names remained statistically signi�cant. This was
not the case for the sex names comparison in either classi�er (sm:
U=1060104, p-value=0.12; wiki: U=1065656, p-value=0.18) or eth-
nicity names comparison for the classi�er trained on the social
media embeddings (Kruscal-Wallis H=4.2, p-value=0.83). Hence, we
show that debiasing at the classi�er level is a much better and safer
methodology to follow. Because of the mathematical de�nition of
the linear support vector classi�er, it was straightforward to mit-
igate the bias in it. For other cases, where non-linearity prevails,
more sophisticated methodologies are needed.

Our last �nding states that biased word embeddings can be useful
for bias prediction tasks. We trained and deployed various models
on the sexism prediction task, with and without the trained biased
word embeddings. On the �rst test, we created a simple LSTM
model, which had as inputs either a random dataset, Wikipedia,
social media, or the sexism dataset word embeddings. We restricted
the embeddings from being trainable, in order to evaluate their
actual in�uence on the results. In addition, we only inserted the val-
ues of the word embeddings for the words that were common in the
datasets. In this way, we could assure that if an embedding dataset
had more impact on the results, that it would be because of the
type of information encoded into the vectors and not the amount of
words existing in the dataset. The models with the trained embed-
dings provided higher test accuracy and F1 scores. The model with
the sexism dataset vectors yielded the best results. The social media
embeddings provided better results than theWikipedia vectors. The

calculated weighted mean cosine similarity between the sexism
dataset vectors and the social media and theWikipedia datasets was
0.49 and 0.39 respectively. This denotes that social media vectors
are more similar to the vectors of the sexism classi�er, which in
turn signi�es that more similar meanings and, consequently, biases
were encoded in them. This is also proven by the sentiment task,
for which the sexism dataset vectors had similar prejudice with the
social media vectors (Figure 1). Thus, the more similar the bias in
the embeddings with the target data, the higher the ability of the
classi�er to detect the bias.

On the second task, we used additional architectures for the
prediction task. We allowed the embeddings to be freely trainable,
and used all the available vectors to predict sexism. The best model
contained an attention layer and provided an accuracy of 80%. Then,
we removed all test observations that contained words that did not
appear in the training process, and recalculated the accuracy. We
obtained an overall score of 92% on the test data. Given the general
di�culty in the detection of sexism and hate-speech by machine
learning models [25, 29], the results are more than satisfactory. The
model’s input was text without any punctuation, nor any other
metadata that generally help in detecting social discrimination [82].
Therefore, we showed that biased word embeddings can substan-
tially help in sexism detection, while attention based networks can
provide really high accuracy in detecting sexism. An overview of
all models can be found in table 5.

Table 5: Classi�cation results for the sexism task

Model Embeddings Trainable Accuracy F1 - sexist F1 - neutral
LSTM Random False 0.57 0.55 0.62
LSTM Wiki - common False 0.68 0.65 0.70
LSTM SM - common False 0.70 0.69 0.70
LSTM Sexism - common False 0.75 0.75 0.75

Attention Sexism - all True 0.80 0.80 0.81
Attention Sexism - all - �ltered True 0.92 0.92 0.91

4.3 Evaluating biased word embeddings
The analysis provided a thorough description of bias in word em-
beddings. We proved that the technique replicates biases related to
sexism, homophobia, and xenophobia immanent in the original text.
We showed that Wikipedia data mediates to the word embeddings
stronger stereotypes, while political social media data imprints
stronger forms of group favoritism into the vectors.

The study illustrated that the use of biased word embeddings
results in the creation of biased machine learning classi�ers. Models
trained on the embeddings replicate the preexisting bias. Bias di�u-
sion was proven both for sexism and xenophobia, with sentiment
classi�ers assigning positive sentiments to Germans and negative
sentiments to foreigners. In addition, the amount of polarity for
men and women in the embeddings was di�used unaltered into
the models. We used two methods for bias mitigation, one at the
level of the embeddings and one at the level of the classi�er. In
both cases, we lowered the bias, while mitigation at the level of the
classi�er was the optimal one.

The analysis also showed that biased word embeddings can be
bene�cial for bias prediction. Embeddings containing bias similar to
the one in the investigated dataset can help in the classi�cation task.
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Abstract

Transformer-based models have pushed state

of the art in many areas of NLP, but our under-

standing of what is behind their success is still

limited. This paper is the first survey of over

150 studies of the popular BERT model. We

review the current state of knowledge about

how BERT works, what kind of information

it learns and how it is represented, common

modifications to its training objectives and

architecture, the overparameterization issue,

and approaches to compression. We then

outline directions for future research.

1 Introduction

Since their introduction in 2017, Transformers

(Vaswani et al., 2017) have taken NLP by storm,

offering enhanced parallelization and better mod-

eling of long-range dependencies. The best known

Transformer-based model is BERT (Devlin et al.,

2019); it obtained state-of-the-art results in nume-

rous benchmarks and is still a must-have baseline.

Although it is clear that BERT works remark-

ably well, it is less clear why, which limits further

hypothesis-driven improvement of the architec-

ture. Unlike CNNs, the Transformers have little

cognitive motivation, and the size of these models

limits our ability to experiment with pre-training

and perform ablation studies. This explains a large

number of studies over the past year that at-

tempted to understand the reasons behind BERT’s

performance.

In this paper, we provide an overview of what

has been learned to date, highlighting the questions

that are still unresolved. We first consider the

linguistic aspects of it, namely, the current evi-

dence regarding the types of linguistic and world

knowledge learned by BERT, as well as where and

how this knowledge may be stored in the model.

We then turn to the technical aspects of the model

and provide an overview of the current proposals

to improve BERT’s architecture, pre-training, and

fine-tuning. We conclude by discussing the issue

of overparameterization, the approaches to com-

pressing BERT, and the nascent area of pruning

as a model analysis technique.

2 Overview of BERT Architecture

Fundamentally, BERT is a stack of Transformer

encoder layers (Vaswani et al., 2017) that consist

of multiple self-attention ‘‘heads’’. For every in-

put token in a sequence, each head computes key,

value, and query vectors, used to create a weighted

representation. The outputs of all heads in the

same layer are combined and run through a fully

connected layer. Each layer is wrapped with a skip

connection and followed by layer normalization.

The conventional workflow for BERT consists

of two stages: pre-training and fine-tuning. Pre-

training uses two self-supervised tasks: masked

language modeling (MLM, prediction of randomly

masked input tokens) and next sentence predic-

tion (NSP, predicting if two input sentences are

adjacent to each other). In fine-tuning for down-

stream applications, one or more fully connected

layers are typically added on top of the final

encoder layer.

The input representations are computed as

follows: Each word in the input is first tokenized

into wordpieces (Wu et al., 2016), and then three

embedding layers (token, position, and segment)

are combined to obtain a fixed-length vector.

Special token [CLS] is used for classification

predictions, and [SEP] separates input segments.

Google1 and HuggingFace (Wolf et al., 2020)

provide many variants of BERT, including the

original ‘‘base’’ and ‘‘large’’ versions. They vary

in the number of heads, layers, and hidden state

size.

1https://github.com/google-research/bert.
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3 What Knowledge Does BERT Have?

A number of studies have looked at the know-

ledge encoded in BERT weights. The popular ap-

proaches include fill-in-the-gap probes of MLM,

analysis of self-attention weights, and probing

classifiers with different BERT representations as

inputs.

3.1 Syntactic Knowledge

Lin et al. (2019) showed that BERT representa-

tions are hierarchical rather than linear, that is,

there is something akin to syntactic tree structure

in addition to the word order information. Tenney

et al. (2019b) and Liu et al. (2019a) also showed

that BERT embeddings encode information

about parts of speech, syntactic chunks, and

roles. Enough syntactic information seems to be

captured in the token embeddings themselves to

recover syntactic trees (Vilares et al., 2020; Kim

et al., 2020; Rosa and Mareček, 2019), although

probing classifiers could not recover the labels

of distant parent nodes in the syntactic tree (Liu

et al., 2019a). Warstadt and Bowman (2020) report

evidence of hierarchical structure in three out of

four probing tasks.

As far as how syntax is represented, it seems

that syntactic structure is not directly encoded

in self-attention weights. Htut et al. (2019) were

unable to extract full parse trees from BERT

heads even with the gold annotations for the root.

Jawahar et al. (2019) include a brief illustration of

a dependency tree extracted directly from self-

attention weights, but provide no quantitative

evaluation.

However, syntactic information can be recov-

ered from BERT token representations. Hewitt

and Manning (2019) were able to learn transforma-

tion matrices that successfully recovered syntactic

dependencies in PennTreebank data from BERT’s

token embeddings (see also Manning et al., 2020).

Jawahar et al. (2019) experimented with transfor-

mations of the [CLS] token using Tensor Product

Decomposition Networks (McCoy et al., 2019a),

concluding that dependency trees are the best

match among five decomposition schemes (although

the reported MSE differences are very small).

Miaschi and Dell’Orletta (2020) perform a range

of syntactic probing experiments with concate-

nated token representations as input.

Note that all these approaches look for the

evidence of gold-standard linguistic structures,

Figure 1: Parameter-free probe for syntactic know-
ledge: words sharing syntactic subtrees have larger
impact on each other in the MLM prediction (Wu et al.,
2020).

and add some amount of extra knowledge to the

probe. Most recently, Wu et al. (2020) proposed a

parameter-free approach based on measuring the

impact that one word has on predicting another

word within a sequence in the MLM task (Figure 1).

They concluded that BERT ‘‘naturally’’ learns

some syntactic information, although it is not

very similar to linguistic annotated resources.

The fill-in-the-gap probes of MLM showed

that BERT takes subject-predicate agreement

into account when performing the cloze task

(Goldberg, 2019; van Schijndel et al., 2019),

even for meaningless sentences and sentences

with distractor clauses between the subject and

the verb (Goldberg, 2019). A study of negative

polarity items (NPIs) by Warstadt et al. (2019)

showed that BERT is better able to detect the

presence of NPIs (e.g., ‘‘ever’’) and the words

that allow their use (e.g., ‘‘whether’’) than

scope violations.

The above claims of syntactic knowledge are

belied by the evidence that BERT does not

‘‘understand’’ negation and is insensitive to

malformed input. In particular, its predictions

were not altered2 even with shuffled word order,

2See also the recent findings on adversarial triggers, which

get the model to produce a certain output even though they
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(Ettinger, 2019). This could mean that either

BERT’s syntactic knowledge is incomplete, or

it does not need to rely on it for solving its

tasks. The latter seems more likely, since Glavaš

and Vulić (2020) report that an intermediate

fine-tuning step with supervised parsing does

not make much difference for downstream task

performance.

3.2 Semantic Knowledge

To date, more studies have been devoted to

BERT’s knowledge of syntactic rather than se-

mantic phenomena. However, we do have evi-

dence from an MLM probing study that BERT

has some knowledge of semantic roles (Ettinger,

2019). BERT even displays some preference for

the incorrect fillers for semantic roles that are

semantically related to the correct ones, as op-

posed to those that are unrelated (e.g., ‘‘to tip a

chef’’ is better than ‘‘to tip a robin’’, but worse

than ‘‘to tip a waiter’’).

Tenney et al. (2019b) showed that BERT en-

codes information about entity types, relations,

semantic roles, and proto-roles, since this infor-

mation can be detected with probing classifiers.

BERT struggles with representations of num-

bers. Addition and number decoding tasks showed

that BERT does not form good representations for

floating point numbers and fails to generalize away

from the training data (Wallace et al., 2019b). A

part of the problem is BERT’s wordpiece tokeniza-

tion, since numbers of similar values can be di-

vided up into substantially different word chunks.

Out-of-the-box BERT is surprisingly brittle

to named entity replacements: For example,

replacing names in the coreference task changes

85% of predictions (Balasubramanian et al., 2020).

This suggests that the model does not actually

form a generic idea of named entities, although

its F1 scores on NER probing tasks are high

(Tenney et al., 2019a). Broscheit (2019) finds that

fine-tuning BERT on Wikipedia entity linking

‘‘teaches’’ it additional entity knowledge, which

would suggest that it did not absorb all the

relevant entity information during pre-training on

Wikipedia.

are not well-formed from the point of view of a human reader

(Wallace et al., 2019a).
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ledge captured in BERT comes from practitioners

using it to extract such knowledge. One direct

probing study of BERT reports that BERT strug-

gles with pragmatic inference and role-based

event knowledge (Ettinger, 2019). BERT also

struggles with abstract attributes of objects, as

well as visual and perceptual properties that are

likely to be assumed rather than mentioned (Da

and Kasai, 2019).

The MLM component of BERT is easy to adapt

for knowledge induction by filling in the blanks

(e.g., ‘‘Cats like to chase [ ]’’). Petroni et al.

(2019) showed that, for some relation types, va-

nilla BERT is competitive with methods relying

on knowledge bases (Figure 2), and Roberts et al.

(2020) show the same for open-domain QA using

the T5 model (Raffel et al., 2019). Davison et al.

(2019) suggest that it generalizes better to unseen

data. In order to retrieve BERT’s knowledge, we

need good template sentences, and there is work

on their automatic extraction and augmentation

(Bouraoui et al., 2019; Jiang et al., 2019b).

However, BERT cannot reason based on its

world knowledge. Forbes et al. (2019) show that

BERT can ‘‘guess’’ the affordances and properties

of many objects, but cannot reason about the

relationship between properties and affordances.

For example, it ‘‘knows’’ that people can walk

into houses, and that houses are big, but it cannot

infer that houses are bigger than people. Zhou et al.

(2020) and Richardson and Sabharwal (2019) also

show that the performance drops with the number

of necessary inference steps. Some of BERT’s

world knowledge success comes from learning

stereotypical associations (Poerner et al., 2019),

for example, a person with an Italian-sounding

name is predicted to be Italian, even when it is

incorrect.
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and Vulić (2020) report that an intermediate

fine-tuning step with supervised parsing does

not make much difference for downstream task

performance.

3.2 Semantic Knowledge

To date, more studies have been devoted to

BERT’s knowledge of syntactic rather than se-

mantic phenomena. However, we do have evi-

dence from an MLM probing study that BERT

has some knowledge of semantic roles (Ettinger,

2019). BERT even displays some preference for

the incorrect fillers for semantic roles that are

semantically related to the correct ones, as op-

posed to those that are unrelated (e.g., ‘‘to tip a

chef’’ is better than ‘‘to tip a robin’’, but worse

than ‘‘to tip a waiter’’).

Tenney et al. (2019b) showed that BERT en-

codes information about entity types, relations,

semantic roles, and proto-roles, since this infor-

mation can be detected with probing classifiers.

BERT struggles with representations of num-

bers. Addition and number decoding tasks showed

that BERT does not form good representations for

floating point numbers and fails to generalize away

from the training data (Wallace et al., 2019b). A

part of the problem is BERT’s wordpiece tokeniza-

tion, since numbers of similar values can be di-

vided up into substantially different word chunks.

Out-of-the-box BERT is surprisingly brittle

to named entity replacements: For example,

replacing names in the coreference task changes

85% of predictions (Balasubramanian et al., 2020).

This suggests that the model does not actually

form a generic idea of named entities, although

its F1 scores on NER probing tasks are high

(Tenney et al., 2019a). Broscheit (2019) finds that

fine-tuning BERT on Wikipedia entity linking

‘‘teaches’’ it additional entity knowledge, which

would suggest that it did not absorb all the

relevant entity information during pre-training on

Wikipedia.

are not well-formed from the point of view of a human reader

(Wallace et al., 2019a).

Figure 2: BERT world knowledge (Petroni et al., 2019).

3.3 World Knowledge

The bulk of evidence about commonsense know-

ledge captured in BERT comes from practitioners

using it to extract such knowledge. One direct

probing study of BERT reports that BERT strug-

gles with pragmatic inference and role-based

event knowledge (Ettinger, 2019). BERT also

struggles with abstract attributes of objects, as

well as visual and perceptual properties that are

likely to be assumed rather than mentioned (Da

and Kasai, 2019).

The MLM component of BERT is easy to adapt

for knowledge induction by filling in the blanks

(e.g., ‘‘Cats like to chase [ ]’’). Petroni et al.

(2019) showed that, for some relation types, va-

nilla BERT is competitive with methods relying

on knowledge bases (Figure 2), and Roberts et al.

(2020) show the same for open-domain QA using

the T5 model (Raffel et al., 2019). Davison et al.

(2019) suggest that it generalizes better to unseen

data. In order to retrieve BERT’s knowledge, we

need good template sentences, and there is work

on their automatic extraction and augmentation

(Bouraoui et al., 2019; Jiang et al., 2019b).

However, BERT cannot reason based on its

world knowledge. Forbes et al. (2019) show that

BERT can ‘‘guess’’ the affordances and properties

of many objects, but cannot reason about the

relationship between properties and affordances.

For example, it ‘‘knows’’ that people can walk

into houses, and that houses are big, but it cannot

infer that houses are bigger than people. Zhou et al.

(2020) and Richardson and Sabharwal (2019) also

show that the performance drops with the number

of necessary inference steps. Some of BERT’s

world knowledge success comes from learning

stereotypical associations (Poerner et al., 2019),

for example, a person with an Italian-sounding

name is predicted to be Italian, even when it is

incorrect.

844

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00349/1923281/tacl_a_00349.pdf by guest on 06 August 2021

truncated sentences, removed subjects and objects

(Ettinger, 2019). This could mean that either

BERT’s syntactic knowledge is incomplete, or

it does not need to rely on it for solving its

tasks. The latter seems more likely, since Glavaš
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(e.g., ‘‘Cats like to chase [ ]’’). Petroni et al.

(2019) showed that, for some relation types, va-

nilla BERT is competitive with methods relying

on knowledge bases (Figure 2), and Roberts et al.

(2020) show the same for open-domain QA using

the T5 model (Raffel et al., 2019). Davison et al.

(2019) suggest that it generalizes better to unseen

data. In order to retrieve BERT’s knowledge, we

need good template sentences, and there is work

on their automatic extraction and augmentation

(Bouraoui et al., 2019; Jiang et al., 2019b).

However, BERT cannot reason based on its

world knowledge. Forbes et al. (2019) show that

BERT can ‘‘guess’’ the affordances and properties

of many objects, but cannot reason about the

relationship between properties and affordances.

For example, it ‘‘knows’’ that people can walk

into houses, and that houses are big, but it cannot

infer that houses are bigger than people. Zhou et al.

(2020) and Richardson and Sabharwal (2019) also

show that the performance drops with the number

of necessary inference steps. Some of BERT’s

world knowledge success comes from learning

stereotypical associations (Poerner et al., 2019),

for example, a person with an Italian-sounding

name is predicted to be Italian, even when it is

incorrect.
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3.4 Limitations

Multiple probing studies in section 3 and section 4

report that BERT possesses a surprising amount of

syntactic, semantic, and world knowledge. How-

ever, Tenney et al. (2019a) remark, ‘‘the fact that

a linguistic pattern is not observed by our probing

classifier does not guarantee that it is not there, and

the observation of a pattern does not tell us how it

is used.’’ There is also the issue of how complex a

probe should be allowed to be (Liu et al., 2019a).

If a more complex probe recovers more infor-

mation, to what extent are we still relying on the

original model?

Furthermore, different probing methods may

lead to complementary or even contradictory con-

clusions, which makes a single test (as in most

studies) insufficient (Warstadt et al., 2019). A

given method might also favor one model over

another, for example, RoBERTa trails BERT with

one tree extraction method, but leads with another

(Htut et al., 2019). The choice of linguistic formal-

ism also matters (Kuznetsov and Gurevych, 2020).

In view of all that, the alternative is to focus

on identifying what BERT actually relies on at

inference time. This direction is currently pursued

both at the level of architecture blocks (to be

discussed in detail in subsection 6.3), and at the

level of information encoded in model weights.

Amnesic probing (Elazar et al., 2020) aims to

specifically remove certain information from the

model and see how it changes performance,

finding, for example, that language modeling does

rely on part-of-speech information.

Another direction is information-theoretic prob-

ing. Pimentel et al. (2020) operationalize probing

as estimating mutual information between the

learned representation and a given linguistic prop-

erty, which highlights that the focus should be

not on the amount of information contained in

a representation, but rather on how easily it can

be extracted from it. Voita and Titov (2020) quan-

tify the amount of effort needed to extract infor-

mation from a given representation as minimum

description length needed to communicate both

the probe size and the amount of data required for

it to do well on a task.

4 Localizing Linguistic Knowledge

4.1 BERT Embeddings

In studies of BERT, the term ‘‘embedding’’ refers

to the output of a Transformer layer (typically,

the final one). Both conventional static embed-

dings (Mikolov et al., 2013) and BERT-style

embeddings can be viewed in terms of mutual

information maximization (Kong et al., 2019),

but the latter are contextualized. Every token is

represented by a vector dependent on the par-

ticular context of occurrence, and contains at least

some information about that context (Miaschi and

Dell’Orletta, 2020).

Several studies reported that distilled context-

ualized embeddings better encode lexical seman-

tic information (i.e., they are better at traditional

word-level tasks such as word similarity). The

methods to distill a contextualized representation

into static include aggregating the information

across multiple contexts (Akbik et al., 2019;

Bommasani et al., 2020), encoding ‘‘semantically

bleached’’ sentences that rely almost exclusively

on the meaning of a given word (e.g., "This is <>")

(May et al., 2019), and even using contextualized

embeddings to train static embeddings (Wang

et al., 2020d).

But this is not to say that there is no room

for improvement. Ethayarajh (2019) measure how

similar the embeddings for identical words are

in every layer, reporting that later BERT layers

produce more context-specific representations.3

They also find that BERT embeddings occupy a

narrow cone in the vector space, and this effect

increases from the earlier to later layers. That is,

two random words will on average have a much

higher cosine similarity than expected if em-

beddings were directionally uniform (isotro-

pic). Because isotropy was shown to be beneficial

for static word embeddings (Mu and Viswanath,

2018), this might be a fruitful direction to explore

for BERT.

Because BERT embeddings are contextualized,

an interesting question is to what extent they

capture phenomena like polysemy and hom-

onymy. There is indeed evidence that BERT’s

contextualized embeddings form distinct clus-

ters corresponding to word senses (Wiedemann

et al., 2019; Schmidt and Hofmann, 2020), making

BERT successful at word sense disambiguation

task. However, Mickus et al. (2019) note that

the representations of the same word depend

3Voita et al. (2019a) look at the evolution of token

embeddings, showing that in the earlier Transformer layers,

MLM forces the acquisition of contextual information at the

expense of the token identity, which gets recreated in later

layers.
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ters corresponding to word senses (Wiedemann

et al., 2019; Schmidt and Hofmann, 2020), making

BERT successful at word sense disambiguation

task. However, Mickus et al. (2019) note that

the representations of the same word depend

3Voita et al. (2019a) look at the evolution of token

embeddings, showing that in the earlier Transformer layers,

MLM forces the acquisition of contextual information at the

expense of the token identity, which gets recreated in later

layers.
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on the position of the sentence in which it

occurs, likely due to the NSP objective. This is

not desirable from the linguistic point of view, and

could be a promising avenue for future work.

The above discussion concerns token embed-

dings, but BERT is typically used as a sentence

or text encoder. The standard way to generate

sentence or text representations for classification

is to use the [CLS] token, but alternatives are also

being discussed, including concatenation of token

representations (Tanaka et al., 2020), normalized

mean (Tanaka et al., 2020), and layer activations

(Ma et al., 2019). See Toshniwal et al. (2020) for a

systematic comparison of several methods across

tasks and sentence encoders.

4.2 Self-attention Heads

Several studies proposed classification of attention

head types. Raganato and Tiedemann (2018) dis-

cuss attending to the token itself, previous/next

tokens, and the sentence end. Clark et al. (2019)

distinguish between attending to previous/next

tokens, [CLS], [SEP], punctuation, and ‘‘at-

tending broadly’’ over the sequence. Kovaleva

et al. (2019) propose five patterns, shown in

Figure 3.

4.2.1 Heads With Linguistic Functions

The ‘‘heterogeneous’’ attention pattern shown

in Figure 3 could potentially be linguistically

interpretable, and a number of studies focused on

identifying the functions of self-attention heads. In

particular, some BERT heads seem to specialize

in certain types of syntactic relations. Htut

et al. (2019) and Clark et al. (2019) report that

there are BERT heads that attended significantly

more than a random baseline to words in certain

syntactic positions. The datasets and methods

used in these studies differ, but they both find

that there are heads that attend to words in

obj role more than the positional baseline. The

evidence for nsubj, advmod, and amod varies

between these two studies. The overall conclusion

is also supported by Voita et al.’s (2019b) study

of the base Transformer in machine translation

context. Hoover et al. (2019) hypothesize that even

complex dependencies like dobj are encoded by

a combination of heads rather than a single head,

but this work is limited to qualitative analysis.

Zhao and Bethard (2020) looked specifically for

the heads encoding negation scope.

Both Clark et al. (2019) and Htut et al. (2019)

conclude that no single head has the complete

syntactic tree information, in line with evidence

of partial knowledge of syntax (cf. subsection 3.1).

However, Clark et al. (2019) identify a BERT head

that can be directly used as a classifier to perform

coreference resolution on par with a rule-based

system, which by itself would seem to require

quite a lot of syntactic knowledge.

Lin et al. (2019) present evidence that attention

weights are weak indicators of subject-verb

agreement and reflexive anaphora. Instead of

serving as strong pointers between tokens that

should be related, BERT’s self-attention weights

were close to a uniform attention baseline, but

there was some sensitivity to different types of

distractors coherent with psycholinguistic data.

This is consistent with conclusions by Ettinger

(2019).

To our knowledge, morphological information

in BERT heads has not been addressed, but with

the sparse attention variant by Correia et al.

(2019) in the base Transformer, some attention

heads appear to merge BPE-tokenized words.

For semantic relations, there are reports of self-

attention heads encoding core frame-semantic

relations (Kovaleva et al., 2019), as well as lexi-

cographic and commonsense relations (Cui et al.,

2020).

The overall popularity of self-attention as an

interpretability mechanism is due to the idea that

‘‘attention weight has a clear meaning: how much
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on the position of the sentence in which it

occurs, likely due to the NSP objective. This is

not desirable from the linguistic point of view, and

could be a promising avenue for future work.

The above discussion concerns token embed-

dings, but BERT is typically used as a sentence

or text encoder. The standard way to generate

sentence or text representations for classification

is to use the [CLS] token, but alternatives are also

being discussed, including concatenation of token

representations (Tanaka et al., 2020), normalized

mean (Tanaka et al., 2020), and layer activations

(Ma et al., 2019). See Toshniwal et al. (2020) for a

systematic comparison of several methods across

tasks and sentence encoders.

4.2 Self-attention Heads

Several studies proposed classification of attention

head types. Raganato and Tiedemann (2018) dis-

cuss attending to the token itself, previous/next

tokens, and the sentence end. Clark et al. (2019)

distinguish between attending to previous/next

tokens, [CLS], [SEP], punctuation, and ‘‘at-

tending broadly’’ over the sequence. Kovaleva

et al. (2019) propose five patterns, shown in

Figure 3.

4.2.1 Heads With Linguistic Functions

The ‘‘heterogeneous’’ attention pattern shown

in Figure 3 could potentially be linguistically

interpretable, and a number of studies focused on

identifying the functions of self-attention heads. In

particular, some BERT heads seem to specialize

in certain types of syntactic relations. Htut

et al. (2019) and Clark et al. (2019) report that

there are BERT heads that attended significantly

more than a random baseline to words in certain

syntactic positions. The datasets and methods

used in these studies differ, but they both find

that there are heads that attend to words in

obj role more than the positional baseline. The

evidence for nsubj, advmod, and amod varies

between these two studies. The overall conclusion

is also supported by Voita et al.’s (2019b) study

of the base Transformer in machine translation

context. Hoover et al. (2019) hypothesize that even

complex dependencies like dobj are encoded by

a combination of heads rather than a single head,

but this work is limited to qualitative analysis.

Zhao and Bethard (2020) looked specifically for

the heads encoding negation scope.

Both Clark et al. (2019) and Htut et al. (2019)

conclude that no single head has the complete

syntactic tree information, in line with evidence

of partial knowledge of syntax (cf. subsection 3.1).

However, Clark et al. (2019) identify a BERT head

that can be directly used as a classifier to perform

coreference resolution on par with a rule-based

system, which by itself would seem to require

quite a lot of syntactic knowledge.

Lin et al. (2019) present evidence that attention

weights are weak indicators of subject-verb

agreement and reflexive anaphora. Instead of

serving as strong pointers between tokens that

should be related, BERT’s self-attention weights

were close to a uniform attention baseline, but

there was some sensitivity to different types of

distractors coherent with psycholinguistic data.

This is consistent with conclusions by Ettinger

(2019).

To our knowledge, morphological information

in BERT heads has not been addressed, but with

the sparse attention variant by Correia et al.

(2019) in the base Transformer, some attention

heads appear to merge BPE-tokenized words.

For semantic relations, there are reports of self-

attention heads encoding core frame-semantic

relations (Kovaleva et al., 2019), as well as lexi-

cographic and commonsense relations (Cui et al.,

2020).

The overall popularity of self-attention as an

interpretability mechanism is due to the idea that

‘‘attention weight has a clear meaning: how much
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on the position of the sentence in which it

occurs, likely due to the NSP objective. This is

not desirable from the linguistic point of view, and

could be a promising avenue for future work.

The above discussion concerns token embed-

dings, but BERT is typically used as a sentence

or text encoder. The standard way to generate

sentence or text representations for classification

is to use the [CLS] token, but alternatives are also

being discussed, including concatenation of token

representations (Tanaka et al., 2020), normalized

mean (Tanaka et al., 2020), and layer activations

(Ma et al., 2019). See Toshniwal et al. (2020) for a

systematic comparison of several methods across

tasks and sentence encoders.

4.2 Self-attention Heads

Several studies proposed classification of attention

head types. Raganato and Tiedemann (2018) dis-

cuss attending to the token itself, previous/next

tokens, and the sentence end. Clark et al. (2019)

distinguish between attending to previous/next

tokens, [CLS], [SEP], punctuation, and ‘‘at-

tending broadly’’ over the sequence. Kovaleva

et al. (2019) propose five patterns, shown in

Figure 3.

4.2.1 Heads With Linguistic Functions

The ‘‘heterogeneous’’ attention pattern shown

in Figure 3 could potentially be linguistically

interpretable, and a number of studies focused on

identifying the functions of self-attention heads. In

particular, some BERT heads seem to specialize

in certain types of syntactic relations. Htut

et al. (2019) and Clark et al. (2019) report that

there are BERT heads that attended significantly

more than a random baseline to words in certain

syntactic positions. The datasets and methods

used in these studies differ, but they both find

that there are heads that attend to words in

obj role more than the positional baseline. The

evidence for nsubj, advmod, and amod varies

between these two studies. The overall conclusion

is also supported by Voita et al.’s (2019b) study

of the base Transformer in machine translation

context. Hoover et al. (2019) hypothesize that even

complex dependencies like dobj are encoded by

a combination of heads rather than a single head,

but this work is limited to qualitative analysis.

Zhao and Bethard (2020) looked specifically for

the heads encoding negation scope.

Both Clark et al. (2019) and Htut et al. (2019)

conclude that no single head has the complete

syntactic tree information, in line with evidence

of partial knowledge of syntax (cf. subsection 3.1).

However, Clark et al. (2019) identify a BERT head

that can be directly used as a classifier to perform

coreference resolution on par with a rule-based

system, which by itself would seem to require

quite a lot of syntactic knowledge.

Lin et al. (2019) present evidence that attention

weights are weak indicators of subject-verb

agreement and reflexive anaphora. Instead of

serving as strong pointers between tokens that

should be related, BERT’s self-attention weights

were close to a uniform attention baseline, but

there was some sensitivity to different types of

distractors coherent with psycholinguistic data.

This is consistent with conclusions by Ettinger

(2019).

To our knowledge, morphological information

in BERT heads has not been addressed, but with

the sparse attention variant by Correia et al.

(2019) in the base Transformer, some attention

heads appear to merge BPE-tokenized words.

For semantic relations, there are reports of self-

attention heads encoding core frame-semantic

relations (Kovaleva et al., 2019), as well as lexi-

cographic and commonsense relations (Cui et al.,

2020).

The overall popularity of self-attention as an

interpretability mechanism is due to the idea that

‘‘attention weight has a clear meaning: how much
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on the position of the sentence in which it

occurs, likely due to the NSP objective. This is

not desirable from the linguistic point of view, and

could be a promising avenue for future work.

The above discussion concerns token embed-

dings, but BERT is typically used as a sentence

or text encoder. The standard way to generate

sentence or text representations for classification

is to use the [CLS] token, but alternatives are also

being discussed, including concatenation of token

representations (Tanaka et al., 2020), normalized

mean (Tanaka et al., 2020), and layer activations

(Ma et al., 2019). See Toshniwal et al. (2020) for a

systematic comparison of several methods across

tasks and sentence encoders.

4.2 Self-attention Heads

Several studies proposed classification of attention

head types. Raganato and Tiedemann (2018) dis-

cuss attending to the token itself, previous/next

tokens, and the sentence end. Clark et al. (2019)

distinguish between attending to previous/next

tokens, [CLS], [SEP], punctuation, and ‘‘at-

tending broadly’’ over the sequence. Kovaleva

et al. (2019) propose five patterns, shown in

Figure 3.

4.2.1 Heads With Linguistic Functions

The ‘‘heterogeneous’’ attention pattern shown

in Figure 3 could potentially be linguistically

interpretable, and a number of studies focused on

identifying the functions of self-attention heads. In

particular, some BERT heads seem to specialize

in certain types of syntactic relations. Htut

et al. (2019) and Clark et al. (2019) report that

there are BERT heads that attended significantly

more than a random baseline to words in certain

syntactic positions. The datasets and methods

used in these studies differ, but they both find

that there are heads that attend to words in

obj role more than the positional baseline. The

evidence for nsubj, advmod, and amod varies

between these two studies. The overall conclusion

is also supported by Voita et al.’s (2019b) study

of the base Transformer in machine translation

context. Hoover et al. (2019) hypothesize that even

complex dependencies like dobj are encoded by

a combination of heads rather than a single head,

but this work is limited to qualitative analysis.

Zhao and Bethard (2020) looked specifically for

the heads encoding negation scope.

Both Clark et al. (2019) and Htut et al. (2019)

conclude that no single head has the complete

syntactic tree information, in line with evidence

of partial knowledge of syntax (cf. subsection 3.1).

However, Clark et al. (2019) identify a BERT head

that can be directly used as a classifier to perform

coreference resolution on par with a rule-based

system, which by itself would seem to require

quite a lot of syntactic knowledge.

Lin et al. (2019) present evidence that attention

weights are weak indicators of subject-verb

agreement and reflexive anaphora. Instead of

serving as strong pointers between tokens that

should be related, BERT’s self-attention weights

were close to a uniform attention baseline, but

there was some sensitivity to different types of

distractors coherent with psycholinguistic data.

This is consistent with conclusions by Ettinger

(2019).

To our knowledge, morphological information

in BERT heads has not been addressed, but with

the sparse attention variant by Correia et al.

(2019) in the base Transformer, some attention

heads appear to merge BPE-tokenized words.

For semantic relations, there are reports of self-

attention heads encoding core frame-semantic

relations (Kovaleva et al., 2019), as well as lexi-

cographic and commonsense relations (Cui et al.,

2020).

The overall popularity of self-attention as an

interpretability mechanism is due to the idea that

‘‘attention weight has a clear meaning: how much
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on the position of the sentence in which it

occurs, likely due to the NSP objective. This is

not desirable from the linguistic point of view, and

could be a promising avenue for future work.

The above discussion concerns token embed-

dings, but BERT is typically used as a sentence

or text encoder. The standard way to generate

sentence or text representations for classification

is to use the [CLS] token, but alternatives are also

being discussed, including concatenation of token

representations (Tanaka et al., 2020), normalized

mean (Tanaka et al., 2020), and layer activations

(Ma et al., 2019). See Toshniwal et al. (2020) for a

systematic comparison of several methods across

tasks and sentence encoders.

4.2 Self-attention Heads

Several studies proposed classification of attention

head types. Raganato and Tiedemann (2018) dis-

cuss attending to the token itself, previous/next

tokens, and the sentence end. Clark et al. (2019)

distinguish between attending to previous/next

tokens, [CLS], [SEP], punctuation, and ‘‘at-

tending broadly’’ over the sequence. Kovaleva

et al. (2019) propose five patterns, shown in

Figure 3.

4.2.1 Heads With Linguistic Functions

The ‘‘heterogeneous’’ attention pattern shown

in Figure 3 could potentially be linguistically

interpretable, and a number of studies focused on

identifying the functions of self-attention heads. In

particular, some BERT heads seem to specialize

in certain types of syntactic relations. Htut

et al. (2019) and Clark et al. (2019) report that

there are BERT heads that attended significantly

more than a random baseline to words in certain

syntactic positions. The datasets and methods

used in these studies differ, but they both find

that there are heads that attend to words in

obj role more than the positional baseline. The

evidence for nsubj, advmod, and amod varies

between these two studies. The overall conclusion

is also supported by Voita et al.’s (2019b) study

of the base Transformer in machine translation

context. Hoover et al. (2019) hypothesize that even

complex dependencies like dobj are encoded by

a combination of heads rather than a single head,

but this work is limited to qualitative analysis.

Zhao and Bethard (2020) looked specifically for

the heads encoding negation scope.

Both Clark et al. (2019) and Htut et al. (2019)

conclude that no single head has the complete

syntactic tree information, in line with evidence

of partial knowledge of syntax (cf. subsection 3.1).

However, Clark et al. (2019) identify a BERT head

that can be directly used as a classifier to perform

coreference resolution on par with a rule-based

system, which by itself would seem to require

quite a lot of syntactic knowledge.

Lin et al. (2019) present evidence that attention

weights are weak indicators of subject-verb

agreement and reflexive anaphora. Instead of

serving as strong pointers between tokens that

should be related, BERT’s self-attention weights

were close to a uniform attention baseline, but

there was some sensitivity to different types of

distractors coherent with psycholinguistic data.

This is consistent with conclusions by Ettinger

(2019).

To our knowledge, morphological information

in BERT heads has not been addressed, but with

the sparse attention variant by Correia et al.

(2019) in the base Transformer, some attention

heads appear to merge BPE-tokenized words.

For semantic relations, there are reports of self-

attention heads encoding core frame-semantic

relations (Kovaleva et al., 2019), as well as lexi-

cographic and commonsense relations (Cui et al.,

2020).

The overall popularity of self-attention as an

interpretability mechanism is due to the idea that

‘‘attention weight has a clear meaning: how much
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a particular word will be weighted when comput-

ing the next representation for the current word’’

(Clark et al., 2019). This view is currently debated

(Jain and Wallace, 2019; Serrano and Smith,

2019; Wiegreffe and Pinter, 2019; Brunner et al.,

2020), and in a multilayer model where attention

is followed by nonlinear transformations, the

patterns in individual heads do not provide a full

picture. Also, although many current papers are

accompanied by attention visualizations, and there

is a growing number of visualization tools (Vig,

2019; Hoover et al., 2019), the visualization is

typically limited to qualitative analysis (often with

cherry-picked examples) (Belinkov and Glass,

2019), and should not be interpreted as definitive

evidence.

4.2.2 Attention to Special Tokens

Kovaleva et al. (2019) show that most self-

attention heads do not directly encode any

non-trivial linguistic information, at least when

fine-tuned on GLUE (Wang et al., 2018), since

only fewer than 50% of heads exhibit the

‘‘heterogeneous’’ pattern. Much of the model pro-

duced the vertical pattern (attention to [CLS],

[SEP], and punctuation tokens), consistent with

the observations by Clark et al. (2019). This re-

dundancy is likely related to the overparameteri-

zation issue (see section 6).

More recently, Kobayashi et al. (2020) showed

that the norms of attention-weighted input vectors,

which yield a more intuitive interpretation of self-

attention, reduce the attention to special tokens.

However, even when the attention weights are

normed, it is still not the case that most heads

that do the ‘‘heavy lifting’’ are even potentially

interpretable (Prasanna et al., 2020).

One methodological choice in in many studies

of attention is to focus on inter-word attention

and simply exclude special tokens (e.g., Lin et al.

[2019] and Htut et al. [2019]). However, if atten-

tion to special tokens actually matters at inference

time, drawing conclusions purely from inter-word

attention patterns does not seem warranted.

The functions of special tokens are not yet well

understood. [CLS] is typically viewed as an ag-

gregated sentence-level representation (although

all token representations also contain at least

some sentence-level information, as discussed in

subsection 4.1); in that case, we may not see, for

example, full syntactic trees in inter-word atten-

tion because part of that information is actually

packed in [CLS].

Clark et al. (2019) experiment with encoding

Wikipedia paragraphs with base BERT to consider

specifically the attention to special tokens, noting

that heads in early layers attend more to [CLS],

in middle layers to [SEP], and in final layers

to periods and commas. They hypothesize that its

function might be one of ‘‘no-op’’, a signal to

ignore the head if its pattern is not applicable to

the current case. As a result, for example, [SEP]

gets increased attention starting in layer 5, but its

importance for prediction drops. However, after

fine-tuning both [SEP] and [CLS] get a lot of

attention, depending on the task (Kovaleva et al.,

2019). Interestingly, BERT also pays a lot of

attention to punctuation, which Clark et al. (2019)

explain by the fact that periods and commas are

simply almost as frequent as the special tokens,

and so the model might learn to rely on them for

the same reasons.

4.3 BERT Layers

The first layer of BERT receives as input a

combination of token, segment, and positional

embeddings.

It stands to reason that the lower layers have

the most information about linear word order.

Lin et al. (2019) report a decrease in the knowledge

of linear word order around layer 4 in BERT-base.

This is accompanied by an increased knowledge

of hierarchical sentence structure, as detected by

the probing tasks of predicting the token index,

the main auxiliary verb and the sentence subject.

There is a wide consensus in studies with

different tasks, datasets, and methodologies that

syntactic information is most prominent in the

middle layers of BERT.4 Hewitt and Manning

(2019) had the most success reconstructing syn-

tactic tree depth from the middle BERT layers (6-9

for base-BERT, 14-19 for BERT-large). Goldberg

(2019) reports the best subject-verb agreement

around layers 8-9, and the performance on syntac-

tic probing tasks used by Jawahar et al. (2019) also

seems to peak around the middle of the model.

The prominence of syntactic information in the

middle BERT layers is related to Liu et al.’s

4These BERT results are also compatible with findings

by Vig and Belinkov (2019), who report the highest attention

to tokens in dependency relations in the middle layers of

GPT-2.
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a particular word will be weighted when comput-

ing the next representation for the current word’’

(Clark et al., 2019). This view is currently debated

(Jain and Wallace, 2019; Serrano and Smith,

2019; Wiegreffe and Pinter, 2019; Brunner et al.,

2020), and in a multilayer model where attention

is followed by nonlinear transformations, the

patterns in individual heads do not provide a full

picture. Also, although many current papers are

accompanied by attention visualizations, and there

is a growing number of visualization tools (Vig,

2019; Hoover et al., 2019), the visualization is

typically limited to qualitative analysis (often with

cherry-picked examples) (Belinkov and Glass,

2019), and should not be interpreted as definitive

evidence.

4.2.2 Attention to Special Tokens

Kovaleva et al. (2019) show that most self-

attention heads do not directly encode any

non-trivial linguistic information, at least when

fine-tuned on GLUE (Wang et al., 2018), since

only fewer than 50% of heads exhibit the

‘‘heterogeneous’’ pattern. Much of the model pro-

duced the vertical pattern (attention to [CLS],

[SEP], and punctuation tokens), consistent with

the observations by Clark et al. (2019). This re-

dundancy is likely related to the overparameteri-

zation issue (see section 6).

More recently, Kobayashi et al. (2020) showed

that the norms of attention-weighted input vectors,

which yield a more intuitive interpretation of self-

attention, reduce the attention to special tokens.

However, even when the attention weights are

normed, it is still not the case that most heads

that do the ‘‘heavy lifting’’ are even potentially

interpretable (Prasanna et al., 2020).

One methodological choice in in many studies

of attention is to focus on inter-word attention

and simply exclude special tokens (e.g., Lin et al.

[2019] and Htut et al. [2019]). However, if atten-

tion to special tokens actually matters at inference

time, drawing conclusions purely from inter-word

attention patterns does not seem warranted.

The functions of special tokens are not yet well

understood. [CLS] is typically viewed as an ag-

gregated sentence-level representation (although

all token representations also contain at least

some sentence-level information, as discussed in

subsection 4.1); in that case, we may not see, for

example, full syntactic trees in inter-word atten-

tion because part of that information is actually

packed in [CLS].

Clark et al. (2019) experiment with encoding

Wikipedia paragraphs with base BERT to consider

specifically the attention to special tokens, noting

that heads in early layers attend more to [CLS],

in middle layers to [SEP], and in final layers

to periods and commas. They hypothesize that its

function might be one of ‘‘no-op’’, a signal to

ignore the head if its pattern is not applicable to

the current case. As a result, for example, [SEP]

gets increased attention starting in layer 5, but its

importance for prediction drops. However, after

fine-tuning both [SEP] and [CLS] get a lot of

attention, depending on the task (Kovaleva et al.,

2019). Interestingly, BERT also pays a lot of

attention to punctuation, which Clark et al. (2019)

explain by the fact that periods and commas are

simply almost as frequent as the special tokens,

and so the model might learn to rely on them for

the same reasons.

4.3 BERT Layers

The first layer of BERT receives as input a

combination of token, segment, and positional

embeddings.

It stands to reason that the lower layers have

the most information about linear word order.

Lin et al. (2019) report a decrease in the knowledge

of linear word order around layer 4 in BERT-base.

This is accompanied by an increased knowledge

of hierarchical sentence structure, as detected by

the probing tasks of predicting the token index,

the main auxiliary verb and the sentence subject.

There is a wide consensus in studies with

different tasks, datasets, and methodologies that

syntactic information is most prominent in the

middle layers of BERT.4 Hewitt and Manning

(2019) had the most success reconstructing syn-

tactic tree depth from the middle BERT layers (6-9

for base-BERT, 14-19 for BERT-large). Goldberg

(2019) reports the best subject-verb agreement

around layers 8-9, and the performance on syntac-

tic probing tasks used by Jawahar et al. (2019) also

seems to peak around the middle of the model.

The prominence of syntactic information in the

middle BERT layers is related to Liu et al.’s

4These BERT results are also compatible with findings

by Vig and Belinkov (2019), who report the highest attention

to tokens in dependency relations in the middle layers of

GPT-2.
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(2019a) observation that the middle layers of

Transformers are best-performing overall and the

most transferable across tasks (see Figure 4).

There is conflicting evidence about syntactic

chunks. Tenney et al. (2019a) conclude that ‘‘the

basic syntactic information appears earlier in the

network while high-level semantic features appear

at the higher layers’’, drawing parallels between

this order and the order of components in a typical

NLP pipeline—from POS-tagging to dependency

parsing to semantic role labeling. Jawahar et al.

(2019) also report that the lower layers were more

useful for chunking, while middle layers were

more useful for parsing. At the same time, the

probing experiments by Liu et al. (2019a) find

the opposite: Both POS-tagging and chunking

were performed best at the middle layers, in both

BERT-base and BERT-large. However, all three

studies use different suites of probing tasks.

The final layers of BERT are the most task-

specific. In pre-training, this means specificity to

the MLM task, which explains why the middle

layers are more transferable (Liu et al., 2019a). In

fine-tuning, it explains why the final layers change

the most (Kovaleva et al., 2019), and why restoring

the weights of lower layers of fine-tuned BERT

to their original values does not dramatically hurt

the model performance (Hao et al., 2019).

Tenney et al. (2019a) suggest that whereas

syntactic information appears early in the model

and can be localized, semantics is spread across

the entire model, which explains why certain

non-trivial examples get solved incorrectly at first

but correctly at the later layers. This is rather to be

expected: Semantics permeates all language, and

linguists debate whether meaningless structures

can exist at all (Goldberg, 2006, p.166–182). But

this raises the question of what stacking more

Transformer layers in BERT actually achieves in

terms of the spread of semantic knowledge, and

whether that is beneficial. Tenney et al. compared

BERT-base and BERT-large, and found that the

overall pattern of cumulative score gains is the

same, only more spread out in the larger model.

Note that Tenney et al.’s (2019a) experiments

concern sentence-level semantic relations; Cui

et al. (2020) report that the encoding of ConceptNet

semantic relations is the worst in the early layers

and increases towards the top. Jawahar et al.

(2019) place ‘‘surface features in lower layers,

syntactic features in middle layers and semantic

features in higher layers’’, but their conclusion is

surprising, given that only one semantic task in

this study actually topped at the last layer, and

three others peaked around the middle and then

considerably degraded by the final layers.

5 Training BERT

This section reviews the proposals to optimize the

training and architecture of the original BERT.

5.1 Model Architecture Choices

To date, the most systematic study of BERT ar-

chitecture was performed by Wang et al. (2019b),

who experimented with the number of layers,

heads, and model parameters, varying one option

and freezing the others. They concluded that the

number of heads was not as significant as the

number of layers. That is consistent with the find-

ings of Voita et al. (2019b) and Michel et al.

(2019) (section 6), and also the observation by

Liu et al. (2019a) that the middle layers were the

most transferable. Larger hidden representation

size was consistently better, but the gains varied

by setting.

All in all, changes in the number of heads and

layers appear to perform different functions.

The issue of model depth must be related to

the information flow from the most task-specific

layers closer to the classifier (Liu et al., 2019a), to

the initial layers which appear to be the most task-

invariant (Hao et al., 2019), and where the tokens

resemble the input tokens the most (Brunner et al.,

2020) (see subsection 4.3). If that is the case,

a deeper model has more capacity to encode

information that is not task-specific.

On the other hand, many self-attention heads

in vanilla BERT seem to naturally learn the same

patterns (Kovaleva et al., 2019). This explains
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on a page, pixels or bytes in a digital representation
of text, or movements of the articulators.5 We take
meaning to be the relation between the form and
something external to language, in a sense that we
will make precise below.

3.1 Meaning and communicative intent
When humans use language, we do so for a purpose:
We do not talk for the joy of moving our articula-
tors, but in order to achieve some communicative
intent. There are many types of communicative
intents: they may be to convey some information
to the other person; or to ask them to do something;
or simply to socialize. We take meaning to be the
relation M ✓ E ⇥ I which contains pairs (e, i) of
natural language expressions e and the communica-
tive intents i they can be used to evoke. Given this
definition of meaning, we can now use understand
to refer to the process of retrieving i given e.

Communicative intents are about something that
is outside of language. When we say Open the
window! or When was Malala Yousafzai born?, the
communicative intent is grounded in the real world
the speaker and listener inhabit together. Commu-
nicative intents can also be about abstract worlds,
e.g. bank accounts, computer file systems, or a
purely hypothetical world in the speaker’s mind.

Linguists distinguish communicative intent from
conventional (or standing) meaning (Quine, 1960;
Grice, 1968). The conventional meaning of an
expression (word, phrase, sentence) is what is con-
stant across all of its possible contexts of use. Con-
ventional meaning is an abstract object that repre-
sents the communicative potential of a form, given
the linguistic system it is drawn from. Each lin-
guistic system (say, English) provides a relation
C ✓ E ⇥ S, which contains pairs (e, s) of expres-
sions e and their conventional meanings s.6 The
field of linguistic semantics provides many com-
peting theories of what conventional meanings s
look like. For our purposes, we don’t need to select
among these theories; all we assume is that conven-
tional meanings must have interpretations, such as
a means of testing them for truth against a model
of the world. Thus, like the meaning relation M , C
connects language to objects outside of language.

5In spoken languages, the primary articulators are the com-
ponents of the vocal tract. In signed languages, they are
principally the hands and face.

6We abstract away here from the facts that linguistic sys-
tems C change over time and are only incompletely shared
among different speakers. They are stable enough to function
as rich signals to communicative intent.

Returning to the meaning relation M from above,
it is best understood as mediated by the relation C
of a linguistic system shared between two inter-
locutors. The speaker has a certain communica-
tive intent i, and chooses an expression e with a
standing meaning s which is fit to express i in the
current communicative situation. Upon hearing e,
the listener then reconstructs s and uses their own
knowledge of the communicative situation and their
hypotheses about the speaker’s state of mind and
intention in an attempt to deduce i.

This active participation of the listener is cru-
cial to human communication (Reddy, 1979; Clark,
1996). For example, to make sense of (8) and (9)
(from Clark, 1996, p.144), the listener has to calcu-
late that Napoleon refers to a specific pose (hand
inside coat flap) or that China trip refers to a person
who has recently traveled to China.

(8) The photographer asked me to do a Napoleon for the
camera.

(9) Never ask two China trips to the same party.

We humans are also very willing, as we will see
in §4 below, to attribute communicative intent to a
linguistic signal of a language we speak, even if the
originator of the signal is not an entity that could
have communicative intent.

To summarize, as we strive to understand how
NLU tasks and system performance on those tasks
relates to the bigger picture goals of building
human-analogous natural language understanding
systems, it is useful to distinguish cleanly between
form, conventional meaning, and communicative
intent. Furthermore, we should be careful not to
confuse communicative intent with ground truth
about the world, as speakers can of course be mis-
taken, be intentionally dissembling, etc.

We argue that a model of natural language that
is trained purely on form will not learn meaning:
if the training data is only form, there is not suffi-
cient signal to learn the relation M between that
form and the non-linguistic intent of human lan-
guage users, nor C between form and the standing
meaning the linguistic system assigns to each form.

3.2 Meaning and intelligence

Meaning and understanding have long been seen
as key to intelligence. Turing (1950) argued that a
machine can be said to “think” if a human judge
cannot distinguish it from a human interlocutor af-
ter having an arbitrary written conversation with
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Abstract
The success of the large neural language mod-
els on many NLP tasks is exciting. However,
we find that these successes sometimes lead
to hype in which these models are being de-
scribed as “understanding” language or captur-
ing “meaning”. In this position paper, we ar-
gue that a system trained only on form has a
priori no way to learn meaning. In keeping
with the ACL 2020 theme of “Taking Stock of
Where We’ve Been and Where We’re Going”,
we argue that a clear understanding of the dis-
tinction between form and meaning will help
guide the field towards better science around
natural language understanding.

1 Introduction

The current state of affairs in NLP is that the large
neural language models (LMs), such as BERT (De-
vlin et al., 2019) or GPT-2 (Radford et al., 2019),
are making great progress on a wide range of
tasks, including those that are ostensibly meaning-
sensitive. This has led to claims, in both academic
and popular publications, that such models “under-
stand” or “comprehend” natural language or learn
its “meaning”. From our perspective, these are
overclaims caused by a misunderstanding of the
relationship between linguistic form and meaning.

We argue that the language modeling task, be-
cause it only uses form as training data, cannot in
principle lead to learning of meaning. We take the
term language model to refer to any system trained
only on the task of string prediction, whether it
operates over characters, words or sentences, and
sequentially or not. We take (linguistic) meaning
to be the relation between a linguistic form and
communicative intent.

Our aim is to advocate for an alignment of claims
and methodology: Human-analogous natural lan-
guage understanding (NLU) is a grand challenge
of artificial intelligence, which involves mastery of

the structure and use of language and the ability
to ground it in the world. While large neural LMs
may well end up being important components of
an eventual full-scale solution to human-analogous
NLU, they are not nearly-there solutions to this
grand challenge. We argue in this paper that gen-
uine progress in our field — climbing the right hill,
not just the hill on whose slope we currently sit —
depends on maintaining clarity around big picture
notions such as meaning and understanding in task
design and reporting of experimental results.

After briefly reviewing the ways in which large
LMs are spoken about and summarizing the re-
cent flowering of “BERTology” papers (§2), we
offer a working definition for “meaning” (§3) and
a series of thought experiments illustrating the im-
possibility of learning meaning when it is not in
the training signal (§4,5). We then consider the
human language acquisition literature for insight
into what information humans use to bootstrap lan-
guage learning (§6) and the distributional seman-
tics literature to discuss what is required to ground
distributional models (§7). §8 presents reflections
on how we look at progress and direct research
effort in our field, and in §9, we address possible
counterarguments to our main thesis.

2 Large LMs: Hype and analysis

Publications talking about the application of large
LMs to meaning-sensitive tasks tend to describe
the models with terminology that, if interpreted at
face value, is misleading. Here is a selection from
academically-oriented pieces (emphasis added):
(1) In order to train a model that understands sentence

relationships, we pre-train for a binarized next sentence
prediction task. (Devlin et al., 2019)

(2) Using BERT, a pretraining language model, has been
successful for single-turn machine comprehension . . .
(Ohsugi et al., 2019)

(3) The surprisingly strong ability of these models to re-
call factual knowledge without any fine-tuning demon-
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each. However, humans are quick to attribute mean-
ing and even intelligence to artificial agents, even
when they know them to be artificial, as evidenced
by the way people formed attachments to ELIZA
(Weizenbaum, 1966; Block, 1981).

This means we must be extra careful in devising
evaluations for machine understanding, as Searle
(1980) elaborates with his Chinese Room experi-
ment: he develops the metaphor of a “system” in
which a person who does not speak Chinese an-
swers Chinese questions by consulting a library of
Chinese books according to predefined rules. From
the outside, the system seems like it “understands”
Chinese, although in reality no actual understand-
ing happens anywhere inside the system.

Searle’s thought experiment begins from the
premise that it is possible to manipulate forms
well enough to be indistinguishable from a system
that understands the meaning of the forms, reasons
about it, and responds appropriately. We observe
that much recent work in NLP claims to be build-
ing systems where not only the runtime system
but in fact also the process for building it only has
access to form. But language is used for communi-
cation about the speakers’ actual (physical, social,
and mental) world, and so the reasoning behind
producing meaningful responses must connect the
meanings of perceived inputs to information about
that world. This in turn means that for a human
or a machine to learn a language, they must solve
what Harnad (1990) calls the symbol grounding
problem. Harnad encapsulates this by pointing to
the impossibility for a non-speaker of Chinese to
learn the meanings of Chinese words from Chinese
dictionary definitions alone.

Our purpose here is to look more deeply into
why meaning can’t be learned from linguistic form
alone, even in the context of modern hardware and
techniques for scaling connectionist models to the
point where they can take in vast amounts of data.
We argue that, independently of whether passing
the Turing test would mean a system is intelligent,
a system that is trained only on form would fail
a sufficiently sensitive test, because it lacks the
ability to connect its utterances to the world.

4 The octopus test

In order to illustrate the challenges in attempting
to learn meaning from form alone, we propose a
concrete scenario. Say that A and B, both fluent
speakers of English, are independently stranded on

two uninhabited islands. They soon discover that
previous visitors to these islands have left behind
telegraphs and that they can communicate with
each other via an underwater cable. A and B start
happily typing messages to each other.

Meanwhile, O, a hyper-intelligent deep-sea oc-
topus who is unable to visit or observe the two
islands, discovers a way to tap into the underwa-
ter cable and listen in on A and B’s conversations.
O knows nothing about English initially, but is
very good at detecting statistical patterns. Over
time, O learns to predict with great accuracy how
B will respond to each of A’s utterances. O also
observes that certain words tend to occur in similar
contexts, and perhaps learns to generalize across
lexical patterns by hypothesizing that they can be
used somewhat interchangeably. Nonetheless, O
has never observed these objects, and thus would
not be able to pick out the referent of a word when
presented with a set of (physical) alternatives.

At some point, O starts feeling lonely. He cuts
the underwater cable and inserts himself into the
conversation, by pretending to be B and replying
to A’s messages. Can O successfully pose as B
without making A suspicious? This constitutes
a weak form of the Turing test (weak because A
has no reason to suspect she is talking to a non-
human); the interesting question is whether O fails
it because he has not learned the meaning relation,
having seen only the form of A and B’s utterances.

The extent to which O can fool A depends on
the task — that is, on what A is trying to talk about.
A and B have spent a lot of time exchanging trivial
notes about their daily lives to make the long island
evenings more enjoyable. It seems possible that O
would be able to produce new sentences of the kind
B used to produce; essentially acting as a chatbot.
This is because the utterances in such conversations
have a primarily social function, and do not need to
be grounded in the particulars of the interlocutors’
actual physical situation nor anything else specific
about the real world. It is sufficient to produce text
that is internally coherent.

Now say that A has invented a new device, say
a coconut catapult. She excitedly sends detailed
instructions on building a coconut catapult to B,
and asks about B’s experiences and suggestions for
improvements. Even if O had a way of construct-
ing the catapult underwater, he does not know what
words such as rope and coconut refer to, and thus
can’t physically reproduce the experiment. He can
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Abstract
The success of the large neural language mod-
els on many NLP tasks is exciting. However,
we find that these successes sometimes lead
to hype in which these models are being de-
scribed as “understanding” language or captur-
ing “meaning”. In this position paper, we ar-
gue that a system trained only on form has a
priori no way to learn meaning. In keeping
with the ACL 2020 theme of “Taking Stock of
Where We’ve Been and Where We’re Going”,
we argue that a clear understanding of the dis-
tinction between form and meaning will help
guide the field towards better science around
natural language understanding.

1 Introduction
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neural language models (LMs), such as BERT (De-
vlin et al., 2019) or GPT-2 (Radford et al., 2019),
are making great progress on a wide range of
tasks, including those that are ostensibly meaning-
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stand” or “comprehend” natural language or learn
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only on the task of string prediction, whether it
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sequentially or not. We take (linguistic) meaning
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communicative intent.
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