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Today

• Lisa’s question about the party analogy task. 

• Custom NER task / NER annotations (Sukayna, Jūratė, Max) 

• Lexical and semantic change (~ Jūratė) 

• Bias and fairness in NLP 

• Natural language understanding? 

• Julia’s task (Extent to which company sustainability report follows recommended guidelines.) 

• BERTology 

• Bender & Koller



4. VALIDITY

Table 5: Semantic party analogies

uk Con (Conservative) is to uk Lab (Labour)
as is to Cosine Expected
de CDU/CSU (Christian Dem.) de SPD (Social Democratic) 0.60 de SPD
fi Kok (National Coalition) fi SDP (Social Democratic) 0.59 fi SDP
nl CDA (Christian Democratic) nl PvdA (Workers’) 0.57 nl PvdA
sv M (Moderate) sv SAP (Social Democratic) 0.49 sv SAP
es PP (People’s) es PSOE (Socialist Workers’) 0.38 es PSOE
it Fi/PdL (Pole of Freedoms) it PD (Democratic Party) 0.27 it PD
cs ODS (Civic Democratic) cs CSSD (Social Democratic) 0.23 cs CSSD

fi SDP (Social Democratic) is to fi Vas (Left Alliance)
as is to Cosine Expected
es PSOE (Socialist Workers’) es IU (United Left) 0.63 es IU
sv S (Social Democratic) sv V (Left) 0.49 sv V
cs CSSD (Social Democratic) cs KSCM (Communist Party) 0.48 cs KSCM
nl PvdA (Workers’) nl GL (Green Left) 0.46 nl SP
it PD (Democratic Party) it SEL (Left Ecology Freedom) 0.30 it SEL
de SPD (Social Democratic) de PDS/LINKE (The Left) 0.26 de PDS/L

No left party target:
uk Lab (Labour) uk Green 0.28 None

de SPD (Social Democratic) is to de GRUENE (Green)
as is to Cosine Expected
it PD (Democratic Party) it FdV (Fed. of the Greens) 0.68 it FdV
sv S (Social Democratic) sv MP (Green) 0.50 sv MP
uk Lab (Labour) uk Green 0.46 uk Green
fi SDP (Social Democratic) fi KD (Christian Democrats) 0.24 fi Vihr
nl PvdA (Workers’) nl GL (Green Left) 0.13 nl GL

No green party target:
es PSOE (Socialist Workers’) es ERC (Rep Left of Catalonia) 0.36 None
cs CSSD (Social Democratic) cs Usvit (Dawn) 0.34 None

fi Vas (Left Alliance) is to fi PS (True Finns)
as is to Cosine Expected
cs KSCM (Communist Party) cs SPR-RSC (Rally for the Republic) 0.37 cs SPR-RSC
uk Plaid (Plaid Cymru) uk UKIP (Independence Party) 0.23 uk UKIP
sv V (Left) sv NyD (New Democracy) 0.22 sv NyD
nl GL (Green Left) nl LPF (Pim Fortuyn) 0.22 nl LPF
it SEL (Left Ecology Freedom) it M5S (Five Star) 0.17 it LN

No nationalist party target:
es IU (United Left) es CDS (Democratic and Social Centre) 0.19 None
de Linke (Left) de Gruene (Green) 0.16 None

Note: The analogy A is to B as C is to ? is completed by calculating the party, from those in the
same country as C, with the vector closest, by cosine similarity to VB �VA +VC. The expected
analogous party is listed to the right. A bolded entry indicates a match with expected relationship.
An italicized entry indicates a clear mismatch.
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Lisa’s question

?

1. It’s random? Somebody’s got to be “closest” and 
there aren’t that many to choose from. The cosine 
similarity is the lowest “match” at .16. 

2. Political sciencey answer — it’s right? Greens and 
Nationalists dominate the cultural/post-material 
dimension and therefore are “closer” in the space than 
it appears when you focus on economic “left-right.” ? 

3. It was a bad example because the True Finns are 
atypical of nationalists. 

4. It was a bad example because it captures multiple 
ideological shifts and we should replace that in the 
table with the center-right to nationalist analogy we 
use in the presentation.



LSTM/CNN Notebooks



Custom NER



https://github.com/tecoholic/ner-annotator





Demonstrate NER Annotator



https://github.com/amrrs/custom-ner-with-spacy/blob/main/
pvr_custom_ner_training2.ipynb 

Colab notebook

https://github.com/amrrs/custom-ner-with-spacy/blob/main/pvr_custom_ner_training2.ipynb
https://github.com/amrrs/custom-ner-with-spacy/blob/main/pvr_custom_ner_training2.ipynb


Lexical change - how have we changed what words we use?



Try it! https://books.google.com/ngrams

Quantitative Analysis of Culture
Using Millions of Digitized Books
Jean-Baptiste Michel,1,2,3,4,5*† Yuan Kui Shen,2,6,7 Aviva Presser Aiden,2,6,8 Adrian Veres,2,6,9

Matthew K. Gray,10 The Google Books Team,10 Joseph P. Pickett,11 Dale Hoiberg,12

Dan Clancy,10 Peter Norvig,10 Jon Orwant,10 Steven Pinker,5

Martin A. Nowak,1,13,14 Erez Lieberman Aiden1,2,6,14,15,16,17*†

We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this
corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics,’
focusing on linguistic and cultural phenomena that were reflected in the English language between
1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography,
the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame,
censorship, and historical epidemiology. Culturomics extends the boundaries of rigorous quantitative
inquiry to a wide array of new phenomena spanning the social sciences and the humanities.

Reading small collections of carefully cho-
senworks enables scholars tomake pow-
erful inferences about trends in human

thought. However, this approach rarely enables
precise measurement of the underlying phenome-
na. Attempts to introduce quantitative methods
into the study of culture (1–6) have been ham-
pered by the lack of suitable data.

We report the creation of a corpus of
5,195,769 digitized books containing ~4% of all
books ever published. Computational analysis of
this corpus enables us to observe cultural trends
and subject them to quantitative investigation.
‘Culturomics’ extends the boundaries of scientific
inquiry to a wide array of new phenomena.

The corpus has emerged from Google’s effort
to digitize books. Most books were drawn from
over 40 university libraries around the world.
Each page was scanned with custom equipment
(7), and the text was digitized bymeans of optical
character recognition (OCR). Additional vol-
umes, both physical and digital, were contributed

by publishers. Metadata describing the date and
place of publication were provided by the li-
braries and publishers and supplemented with
bibliographic databases. Over 15 million books
have been digitized [~12% of all books ever
published (7)]. We selected a subset of over 5
million books for analysis on the basis of the
quality of their OCR and metadata (Fig. 1A and
fig. S1) (7). Periodicals were excluded.

The resulting corpus contains over 500 billion
words, in English (361 billion), French (45 billion),
Spanish (45 billion), German (37 billion), Chinese
(13 billion), Russian (35 billion), and Hebrew
(2 billion). The oldest works were published in
the 1500s. The early decades are represented by
only a few books per year, comprising several
hundred thousand words. By 1800, the corpus
grows to 98 million words per year; by 1900, 1.8
billion; and by 2000, 11 billion (fig. S2).

The corpus cannot be read by a human. If you
tried to read only English-language entries from
the year 2000 alone, at the reasonable pace of 200
words/min, without interruptions for food or sleep,
it would take 80 years. The sequence of letters is
1000 times longer than the human genome: If
you wrote it out in a straight line, it would reach
to the Moon and back 10 times over (8).

To make release of the data possible in light
of copyright constraints, we restricted this initial
study to the question of how often a given 1-gram
or n-gramwas used over time. A 1-gram is a string
of characters uninterrupted by a space; this in-
cludeswords (“banana”, “SCUBA”) but also num-
bers (“3.14159”) and typos (“excesss”). An n-gram
is a sequence of 1-grams, such as the phrases “stock
market” (a 2-gram) and “the United States of
America” (a 5-gram). We restricted n to 5 and lim-
ited our study to n-grams occurring at least 40
times in the corpus.

Usage frequency is computed by dividing the
number of instances of the n-gram in a given year
by the total number of words in the corpus in that
year. For instance, in 1861, the 1-gram “slavery”
appeared in the corpus 21,460 times, on 11,687

pages of 1208 books. The corpus contains
386,434,758words from 1861; thus, the frequency
is 5.5 × 10−5. The use of “slavery” peaked during
the Civil War (early 1860s) and then again during
the civil rights movement (1955–1968) (Fig. 1B)

In contrast, we compare the frequency of “the
Great War” to the frequencies of “World War I”
and “World War II”. References to “the Great
War” peak between 1915 and 1941. But although
its frequency drops thereafter, interest in the un-
derlying events had not disappeared; instead, they
are referred to as “World War I” (Fig. 1C).

These examples highlight two central factors
that contribute to culturomic trends.Cultural change
guides the concepts we discuss (such as “slavery”).
Linguistic change, which, of course, has cultural
roots, affects the words we use for those concepts
(“the Great War” versus “World War I”). In this
paper, we examine both linguistic changes, such
as changes in the lexicon and grammar, and cul-
tural phenomena, such as how we remember peo-
ple and events.

The full data set, which comprises over two
billion culturomic trajectories, is available for
download or exploration at www.culturomics.org
and ngrams.googlelabs.com.

The size of the English lexicon. How many
words are in the English language (9)?

We call a 1-gram “common” if its frequency is
greater than one per billion. [This corresponds to
the frequency of the words listed in leading dic-
tionaries (7) (fig. S3).] We compiled a list of all
common 1-grams in 1900, 1950, and 2000, based
on the frequency of each 1-gram in the preced-
ing decade. These lists contained 1,117,997 com-
mon 1-grams in 1900, 1,102,920 in 1950, and
1,489,337 in 2000.

Not all common 1-grams are English words.
Many fell into three nonword categories: (i) 1-grams
with nonalphabetic characters (“l8r”, “3.14159”),
(ii) misspellings (“becuase”, “abberation”), and
(iii) foreign words (“sensitivo”).

To estimate the number of English words, we
manually annotated random samples from the
lists of common 1-grams (7) and determined what
fraction were members of the above nonword
categories. The result ranged from 51% of all
common 1-grams in 1900 to 31% in 2000.

Using this technique, we estimated the num-
ber of words in the English lexicon as 544,000 in
1900, 597,000 in 1950, and 1,022,000 in 2000.
The lexicon is enjoying a period of enormous
growth: The addition of ~8500 words/year has
increased the size of the language by over 70%
during the past 50 years (Fig. 2A).

Notably, we found more words than appear in
any dictionary. For instance, the 2002 Webster’s
Third New International Dictionary (W3), which
keeps track of the contemporary American lexicon,
lists approximately 348,000 single-wordwordforms
(10); the American Heritage Dictionary of the En-
glish Language, Fourth Edition (AHD4) lists
116,161 (11). (Both contain additional multiword
entries.) Part of this gap is because dictionaries often
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exclude proper nouns (fig. S4) and compound
words (“whalewatching”). Even accounting for
these factors,we foundmany undocumentedwords,
such as “aridification” (the process by which a geo-
graphic region becomes dry), “slenthem” (a musical
instrument), and, appropriately, theword “deletable.”

This gap between dictionaries and the lexicon
results from a balance that every dictionary must
strike: It must be comprehensive enough to be a
useful reference but concise enough to be printed,
shipped, and used. As such, many infrequent
words are omitted. To gauge how well dictio-
naries reflect the lexicon, we ordered our year-2000
lexicon by frequency, divided it into eight deciles
(ranging from 10−9 to 10−8, to 10−2 to 10−1) and
sampled each decile (7). We manually checked
how many sample words were listed in the
Oxford English Dictionary (OED) (12) and in the
Merriam-WebsterUnabridgedDictionary (MWD).
(We excluded proper nouns, because neither the
OED nor MWD lists them.) Both dictionaries
had excellent coverage of high-frequency words
but less coverage for frequencies below 10−6:
67% of words in the 10−9 to 10−8 range were
listed in neither dictionary (Fig. 2B). Consistent
with Zipf’s famous law, a large fraction of the
words in our lexicon (63%) were in this lowest-
frequency bin. As a result, we estimated that 52%
of the English lexicon—themajority of thewords
used in English books—consists of lexical “dark
matter” undocumented in standard references (12).

To keep up with the lexicon, dictionaries are
updated regularly (13). We examined how well
these changes corresponded with changes in ac-
tual usage by studying the 2077 1-gramheadwords
added to AHD4 in 2000. The overall frequency of
these words, such as “buckyball” and “netiquette”,
has soared since 1950: Two-thirds exhibited recent

sharp increases in frequency (>2× from 1950 to
2000) (Fig. 2C). Nevertheless, there was a lag be-
tween lexicographers and the lexicon. Over half
thewords added toAHD4were part of the English
lexicon a century ago (frequency >10−9 from 1890
to 1900). In fact, some newly added words, such
as “gypseous” and “amplidyne”, have already un-
dergone a steep decline in frequency (Fig. 2D).

Not only must lexicographers avoid adding
words that have fallen out of fashion, they must
also weed obsolete words from earlier editions.
This is an imperfect process. We found 2220 ob-
solete 1-gram headwords (“diestock”, “alkales-
cent”) in AHD4. Their mean frequency declined
throughout the 20th century and dipped below
10−9 decades ago (Fig. 2D, inset).

Our results suggest that culturomic tools will
aid lexicographers in at least two ways: (i) find-
ing low-frequencywords that they do not list, and
(ii) providing accurate estimates of current fre-
quency trends to reduce the lag between changes
in the lexicon and changes in the dictionary.

The evolution of grammar. Next, we exam-
ined grammatical trends. We studied the English
irregular verbs, a classic model of grammatical
change (14–17). Unlike regular verbs, whose past
tense is generated by adding -ed (jump/jumped),
irregular verbs are conjugated idiosyncratically
(stick/stuck, come/came, get/got) (15).

All irregular verbs coexist with regular com-
petitors (e.g., “strived” and “strove”) that threaten
to supplant them (Fig. 2E and fig. S5). High-
frequency irregulars, which are more readily
remembered, hold their ground better. For in-
stance, we found “found” (frequency: 5 × 10−4)
200,000 timesmore often thanwe finded “finded.”
In contrast, “dwelt” (frequency: 1 × 10−5) dwelt in
our data only 60 times as often as “dwelled”

dwelled. We defined a verb’s “regularity” as the
percentage of instances in the past tense (i.e., the
sum of “drived”, “drove”, and “driven”) in which
the regular form is used.Most irregulars have been
stable for the past 200 years, but 16% underwent
a change in regularity of 10% or more (Fig. 2F).

These changes occurred slowly: It took 200
years for our fastest-moving verb (“chide”) to go
from 10% to 90%. Otherwise, each trajectory
was sui generis; we observed no characteristic
shape. For instance, a few verbs, such as “spill”,
regularized at a constant speed, but others, such
as “thrive” and “dig”, transitioned in fits and starts
(7). In some cases, the trajectory suggested a rea-
son for the trend. For example,with “sped/speeded”
the shift in meaning from “to move rapidly” and
toward “to exceed the legal limit” appears to have
been the driving cause (Fig. 2G).

Six verbs (burn, chide, smell, spell, spill, and
thrive) regularized between 1800 and 2000 (Fig.
2F). Four are remnants of a now-defunct phono-
logical process that used -t instead of -ed; they are
members of a pack of irregulars that survived by
virtue of similarity (bend/bent, build/built, burn/
burnt, learn/learnt, lend/lent, rend/rent, send/sent,
smell/smelt, spell/spelt, spill/spilt, and spoil/spoilt).
Verbs have been defecting from this coalition for
centuries (wend/went, pen/pent, gird/girt, geld/
gelt, and gild/gilt all blend/blent into the domi-
nant -ed rule). Culturomic analysis reveals that
the collapse of this alliance has been the most
significant driver of regularization in the past
200 years. The regularization of burnt, smelt, spelt,
and spilt originated in the United States; the
forms still cling to life in British English (Fig. 2,
E and F). But the -t irregulars may be doomed in
England too. Each year, a population the size of
Cambridge adopts “burned” in lieu of “burnt”.

Fig.1.Culturomic analy-
ses studymillions of books
at once. (A) Top row: Au-
thors have been writing
for millennia; ~129 mil-
lion book editions have
been published since the
adventof theprintingpress
(upper left). Second row:
Libraries and publishing
houses provide books to
Google for scanning (mid-
dle left). Over 15million
bookshavebeendigitized.
Third row: Each book is
associatedwithmetadata.
Fivemillionbooks are cho-
senforcomputationalanal-
ysis (bottom left). Bottom
row:A culturomic time line
shows the frequency of
“apple” in English books
over time (1800–2000).
(B) Usage frequency of
“slavery”. The Civil War (1861–1865) and the civil rights movement (1955–1968) are highlighted in red. The number in the upper left (1e-4 = 10–4) is the unit
of frequency. (C) Usage frequency over time for “the Great War” (blue), “World War I” (green), and “World War II” (red).
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Although irregulars generally yield to regu-
lars, two verbs did the opposite: light/lit and
wake/woke. Both were irregular inMiddle English,
were mostly regular by 1800, and subsequently
backtracked and are irregular again today. The
fact that these verbs have been going back and
forth for nearly 500 years highlights the gradual
nature of the underlying process.

Still, there was at least one instance of rapid
progress by an irregular form. Presently, 1% of

the English-speaking population switches from
“sneaked” to “snuck” every year. Someone will
have snuck off while you read this sentence. As
before, this trend is more prominent in the United
States but recently sneaked across the Atlantic:
America is the world’s leading exporter of both
regular and irregular verbs.

Out with the old. Just as individuals forget
the past (18, 19), so do societies (20) (fig. S6). To
quantify this effect, we reasoned that the fre-

quency of 1-grams such as “1951” could be used
to measure interest in the events of the corre-
sponding year, and we created plots for each year
between 1875 and 1975.

The plots had a characteristic shape. For
example, “1951” was rarely discussed until
the years immediately preceding 1951. Its fre-
quency soared in 1951, remained high for 3 years,
and then underwent a rapid decay, dropping by
half over the next 15 years. Finally, the plots

Fig. 2. Culturomics has profound consequences for
the study of language, lexicography, and grammar.
(A) The size of the English lexicon over time. Tick
marks show the number of single words in three
dictionaries (see text). (B) Fraction of words in the
lexicon that appear in two different dictionaries as a
function of usage frequency. (C) Five words added
by the AHD in its 2000 update. Inset: Median fre-
quency of new words added to AHD4 in 2000. The
frequency of half of these words exceeded 10−9 as
far back as 1890 (white dot). (D) Obsolete words
added to AHD4 in 2000. Inset: Mean frequency of
the 2220 AHD headwords whose current usage fre-
quency is less than 10−9. (E) Usage frequency of
irregular verbs (red) and their regular counterparts
(blue). Some verbs (chide/chided) have regularized
during the past two centuries. The trajectories for
“speeded” and “speed up” (green) are similar, re-
flecting the role of semantic factors in this instance
of regularization. The verb “burn” first regularized
in the United States (U.S. flag) and later in the
United Kingdom (UK flag). The irregular “snuck” is
rapidly gaining on “sneaked”. (F) Scatterplot of the
irregular verbs; each verb’s position depends on its
regularity (see text) in the early 19th century (x coor-
dinate) and in the late 20th century (y coordinate).
For 16% of the verbs, the change in regularity was
greater than 10% (large font). Dashed lines sepa-
rate irregular verbs (regularity < 50%) from reg-
ular verbs (regularity > 50%). Six verbs became
regular (upper left quadrant, blue), whereas two be-
came irregular (lower right quadrant, red). Inset:
The regularity of “chide” over time. (G) Median reg-
ularity of verbs whose past tense is often signified
with a -t suffix instead of -ed (burn, smell, spell, spill,
dwell, learn, and spoil) in U.S. (black) and UK (gray)
books.
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enter a regime marked by slower forgetting:
Collective memory has both a short-term and a
long-term component.

But there have been changes. The amplitude
of the plots is rising every year: Precise dates are
increasingly common. There is also a greater fo-
cus on the present. For instance, “1880” declined
to half its peak value in 1912, a lag of 32 years. In

contrast, “1973” declined to half its peak by
1983, a lag of only 10 years. We are forgetting
our past faster with each passing year (Fig. 3A).

We were curious whether our increasing
tendency to forget the old was accompanied by
more rapid assimilation of the new (21). We di-
vided a list of 147 inventions into time-resolved
cohorts based on the 40-year interval in which

they were first invented (1800–1840, 1840–1880,
and 1880–1920) (7). We tracked the frequency
of each invention in the nth year after it was
invented as compared to its maximum value and
plotted the median of these rescaled trajectories
for each cohort.

The inventions from the earliest cohort
(1800–1840) took over 66 years from invention
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Fig. 3. Cultural turnover is accelerating. (A) We forget: frequency of “1883”
(blue), “1910” (green), and “1950” (red). Inset: We forget faster. The half-life
of the curves (gray dots) is getting shorter (gray line: moving average). (B) Cultural
adoption is quicker. Median trajectory for three cohorts of inventions from three
different time periods (1800–1840, blue; 1840–1880, green; 1880–1920,
red). Inset: The telephone (green; date of invention, green arrow) and radio
(blue; date of invention, blue arrow). (C) Fame of various personalities born
between 1920 and 1930. (D) Frequency of the 50 most famous people born in

1871 (gray lines; median, thick dark gray line). Five examples are highlighted.
(E) The median trajectory of the 1865 cohort is characterized by four
parameters: (i) initial age of celebrity (34 years old, tick mark); (ii) doubling
time of the subsequent rise to fame (4 years, blue line); (iii) age of peak celebrity
(70 years after birth, tick mark), and (iv) half-life of the post-peak forgetting
phase (73 years, red line). Inset: The doubling time and half-life over time.
(F) The median trajectory of the 25 most famous personalities born between
1800 and 1920 in various careers.
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• The ngram data 
do have some 
face validity.


• People didn’t talk 
about “jobs” until 
after the Industrial 
Revolution and 
labor movements.


• People don’t talk 
about “husbandry” 
as much as they 
used to.



• You can do math 
with them!


• The proportion of 
references to “her 
vs. his job”, “her 
vs. his salary”, 
“she vs. he is 
paid” is consistent 
and mirrors in its 
timing the cultural 
phenomenon of 
women moving 
into the workforce.



• But …


• How about how 
texting and online 
communication 
has changed 
language?


• Here we see that 
“lol” peaked 
around 1600.


• WTF?



• Speaking of which 
…


• “wtf” peaked 
around 1860.


• WTAF?



• Why is “Figure” so 
different from 
“figure”?



• Plus, they cherry-
picked the years 
they showed.


• 1900 and 1945, 
for example, have 
lingered in 
“cultural memory” 
and have a 
different pattern.



Semantic change - how have we changed what words mean?
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Abstract

Understanding how words change their
meanings over time is key to models of
language and cultural evolution, but his-
torical data on meaning is scarce, mak-
ing theories hard to develop and test.
Word embeddings show promise as a di-
achronic tool, but have not been carefully
evaluated. We develop a robust method-
ology for quantifying semantic change
by evaluating word embeddings (PPMI,
SVD, word2vec) against known historical
changes. We then use this methodology
to reveal statistical laws of semantic evo-
lution. Using six historical corpora span-
ning four languages and two centuries, we
propose two quantitative laws of seman-
tic change: (i) the law of conformity—the
rate of semantic change scales with an in-
verse power-law of word frequency; (ii)
the law of innovation—independent of fre-
quency, words that are more polysemous
have higher rates of semantic change.

1 Introduction

Shifts in word meaning exhibit systematic regu-
larities (Bréal, 1897; Ullmann, 1962). The rate
of semantic change, for example, is higher in
some words than others (Blank, 1999) — com-
pare the stable semantic history of cat (from Proto-
Germanic kattuz, “cat”) to the varied meanings of
English cast: “to mould”, “a collection of actors’,
“a hardened bandage”, etc. (all from Old Norse
kasta, “to throw”, Simpson et al., 1989).

Various hypotheses have been offered about
such regularities in semantic change, such as an in-
creasing subjectification of meaning, or the gram-
maticalization of inferences (e.g., Geeraerts, 1997;
Blank, 1999; Traugott and Dasher, 2001).

But many core questions about semantic change
remain unanswered. One is the role of fre-
quency. Frequency plays a key role in other lin-
guistic changes, associated sometimes with faster
change—sound changes like lenition occur in
more frequent words—and sometimes with slower
change—high frequency words are more resistant
to morphological regularization (Bybee, 2007;
Pagel et al., 2007; Lieberman et al., 2007). What
is the role of word frequency in meaning change?

Another unanswered question is the relationship
between semantic change and polysemy. Words
gain senses over time as they semantically drift
(Bréal, 1897; Wilkins, 1993; Hopper and Trau-
gott, 2003), and polysemous words1 occur in
more diverse contexts, affecting lexical access
speed (Adelman et al., 2006) and rates of L2
learning (Crossley et al., 2010). But we don’t
know whether the diverse contextual use of pol-
ysemous words makes them more or less likely
to undergo change (Geeraerts, 1997; Winter et
al., 2014; Xu et al., 2015). Furthermore, poly-
semy is strongly correlated with frequency—high
frequency words have more senses (Zipf, 1945;
İlgen and Karaoglan, 2007)—so understanding
how polysemy relates to semantic change requires
controling for word frequency.

Answering these questions requires new meth-
ods that can go beyond the case-studies of a few
words (often followed over widely different time-
periods) that are our most common diachronic
data (Bréal, 1897; Ullmann, 1962; Blank, 1999;
Hopper and Traugott, 2003; Traugott and Dasher,
2001). One promising avenue is the use of distri-
butional semantics, in which words are embedded
in vector spaces according to their co-occurrence
relationships (Bullinaria and Levy, 2007; Turney
and Pantel, 2010), and the embeddings of words

1We use ‘polysemy’ here to refer to related senses as well
as rarer cases of accidental homonymy.
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Figure 1: Two-dimensional visualization of semantic change in English using SGNS vectors.2 a, The word gay shifted from
meaning “cheerful” or “frolicsome” to referring to homosexuality. b, In the early 20th century broadcast referred to “casting
out seeds”; with the rise of television and radio its meaning shifted to “transmitting signals”. c, Awful underwent a process of
pejoration, as it shifted from meaning “full of awe” to meaning “terrible or appalling” (Simpson et al., 1989).

are then compared across time-periods. This new
direction has been effectively demonstrated in a
number of case-studies (Sagi et al., 2011; Wijaya
and Yeniterzi, 2011; Gulordava and Baroni, 2011;
Jatowt and Duh, 2014) and used to perform large-
scale linguistic change-point detection (Kulkarni
et al., 2014) as well as to test a few specific hy-
potheses, such as whether English synonyms tend
to change meaning in similar ways (Xu and Kemp,
2015). However, these works employ widely dif-
ferent embedding approaches and test their ap-
proaches only on English.

In this work, we develop a robust methodol-
ogy for quantifying semantic change using embed-
dings by comparing state-of-the-art approaches
(PPMI, SVD, word2vec) on novel benchmarks.

We then apply this methodology in a large-scale
cross-linguistic analysis using 6 corpora spanning
200 years and 4 languages (English, German,
French, and Chinese). Based on this analysis, we
propose two statistical laws relating frequency and
polysemy to semantic change:

• The law of conformity: Rates of semantic
change scale with a negative power of word
frequency.

• The law of innovation: After controlling for
frequency, polysemous words have signifi-
cantly higher rates of semantic change.

2 Diachronic embedding methods

The following sections outline how we construct
diachronic (historical) word embeddings, by first
constructing embeddings in each time-period and
then aligning them over time, and the metrics that

2Appendix B details the visualization method.

we use to quantify semantic change. All of the
learned embeddings and the code we used to ana-
lyze them are made publicly available.3

2.1 Embedding algorithms
We use three methods to construct word em-
beddings within each time-period: PPMI, SVD,
and SGNS (i.e., word2vec).4 These distributional
methods represent each word wi by a vector wi

that captures information about its co-occurrence
statistics. These methods operationalize the ‘dis-
tributional hypothesis’ that word semantics are im-
plicit in co-occurrence relationships (Harris, 1954;
Firth, 1957). The semantic similarity/distance be-
tween two words is approximated by the cosine
similarity/distance between their vectors (Turney
and Pantel, 2010).

2.1.1 PPMI
In the PPMI representations, the vector embedding
for word wi 2 V contains the positive point-wise
mutual information (PPMI) values between wi and
a large set of pre-specified ‘context’ words. The
word vectors correspond to the rows of the matrix
MPPMI 2 R|V|⇥|VC | with entries given by

MPPMI
i,j = max

⇢
log

✓
p̂(wi, cj)

p̂(w)p̂(cj)

◆
� ↵, 0

�
,

(1)
where cj 2 VC is a context word and ↵ > 0
is a negative prior, which provides a smooth-
ing bias (Levy et al., 2015). The p̂ correspond
to the smoothed empirical probabilities of word

3http://nlp.stanford.edu/projects/histwords
4Synchronic applications of these three methods are re-

viewed in detail in Levy et al. (2015).



2.3 Aligning historical embeddings
In order to compare word vectors from differ-
ent time-periods we must ensure that the vectors
are aligned to the same coordinate axes. Ex-
plicit PPMI vectors are naturally aligned, as each
column simply corresponds to a context word.
Low-dimensional embeddings will not be natu-
rally aligned due to the non-unique nature of the
SVD and the stochastic nature of SGNS. In par-
ticular, both these methods may result in arbi-
trary orthogonal transformations, which do not af-
fect pairwise cosine-similarities within-years but
will preclude comparison of the same word across
time. Previous work circumvented this problem
by either avoiding low-dimensional embeddings
(e.g., Gulordava and Baroni, 2011; Jatowt and
Duh, 2014) or by performing heuristic local align-
ments per word (Kulkarni et al., 2014).

We use orthogonal Procrustes to align the
learned low-dimensional embeddings. Defining
W(t) 2 Rd⇥|V| as the matrix of word embeddings
learned at year t, we align across time-periods
while preserving cosine similarities by optimizing:

R(t) = arg min
Q>Q=I

kW(t)Q�W(t+1)kF , (4)

with R(t) 2 Rd⇥d. The solution corresponds
to the best rotational alignment and can be ob-
tained efficiently using an application of SVD
(Schönemann, 1966).

2.4 Time-series from historical embeddings
Diachronic word embeddings can be used in two
ways to quantify semantic change: (i) we can mea-
sure changes in pair-wise word similarities over
time, or (ii) we can measure how an individual
word’s embedding shifts over time.

Pair-wise similarity time-series Measuring
how the cosine-similarity between pairs of words
changes over time allows us to test hypotheses
about specific linguistic or cultural shifts in a con-
trolled manner. We quantify shifts by computing
the similarity time-series

s(t)(wi, wj) = cos-sim(w(t)
i ,w(t)

j ) (5)

between two words wi and wj over a time-period
(t, ..., t + �). We then measure the Spearman
correlation (⇢) of this series against time, which
allows us to assess the magnitude and signifi-
cance of pairwise similarity shifts; since the Spear-
man correlation is non-parametric, this measure

essentially detects whether the similarity series in-
creased/decreased over time in a significant man-
ner, regardless of the ‘shape’ of this curve.6

Measuring semantic displacement After
aligning the embeddings for individual time-
periods, we can use the aligned word vectors to
compute the semantic displacement that a word
has undergone during a certain time-period. In
particular, we can directly compute the cosine-
distance between a word’s representation for
different time-periods, i.e. cos-dist(wt,wt+�),
as a measure of semantic change. We can also
use this measure to quantify ‘rates’ of semantic
change for different words by looking at the
displacement between consecutive time-points.

3 Comparison of different approaches

We compare the different distributional ap-
proaches on a set of benchmarks designed to test
their scientific utility. We evaluate both their syn-
chronic accuracy (i.e., ability to capture word sim-
ilarity within individual time-periods) and their di-
achronic validity (i.e., ability to quantify semantic
changes over time).

3.1 Synchronic Accuracy
We evaluated the synchronic (within-time-period)
accuracy of the methods using a standard modern
benchmark and the 1990s portion of the ENGALL
data. On Bruni et al. (2012)’s MEN similarity task
of matching human judgments of word similari-
ties, SVD performed best (⇢ = 0.739), followed
by PPMI (⇢ = 0.687) and SGNS (⇢ = 0.649).
These results echo the findings of Levy et al.
(2015), who found SVD to perform best on sim-
ilarity tasks while SGNS performed best on anal-
ogy tasks (which are not the focus of this work).

3.2 Diachronic Validity
We evaluate the diachronic validity of the methods
on two historical semantic tasks: detecting known
shifts and discovering shifts from data. For both
these tasks, we performed detailed evaluations on
a small set of examples (28 known shifts and the
top-10 “discovered” shifts by each method). Us-
ing these reasonably-sized evaluation sets allowed
the authors to evaluate each case rigorously using
existing literature and historical corpora.

6Other metrics or change-point detection approaches, e.g.
mean shifts (Kulkarni et al., 2014) could also be used.



Word Moving towards Moving away Shift start Source
gay homosexual, lesbian happy, showy ca 1920 (Kulkarni et al., 2014)
fatal illness, lethal fate, inevitable <1800 (Jatowt and Duh, 2014)
awful disgusting, mess impressive, majestic <1800 (Simpson et al., 1989)
nice pleasant, lovely refined, dainty ca 1900 (Wijaya and Yeniterzi, 2011)
broadcast transmit, radio scatter, seed ca 1920 (Jeffers and Lehiste, 1979)
monitor display, screen — ca 1930 (Simpson et al., 1989)
record tape, album — ca 1920 (Kulkarni et al., 2014)
guy fellow, man — ca 1850 (Wijaya and Yeniterzi, 2011)
call phone, message — ca 1890 (Simpson et al., 1989)

Table 2: Set of attested historical shifts used to evaluate the methods. The examples are taken from previous works on semantic
change and from the Oxford English Dictionary (OED), e.g. using ‘obsolete’ tags. The shift start points were estimated using
attestation dates in the OED. The first six examples are words that shifted dramatically in meaning while the remaining four are
words that acquired new meanings (while potentially also keeping their old ones).

Method Corpus % Correct %Sig.

PPMI ENGALL 96.9 84.4
COHA 100.0 88.0

SVD ENGALL 100.0 90.6
COHA 100.0 96.0

SGNS ENGALL 100.0 93.8
COHA 100.0 72.0

Table 3: Performance on detection task, i.e. ability to cap-
ture the attested shifts from Table 2. SGNS and SVD capture
the correct directionality of the shifts in all cases (%Correct),
e.g., gay becomes more similar to homosexual, but there are
differences in whether the methods deem the shifts to be sta-
tistically significant at the p < 0.05 level (%Sig).

Detecting known shifts. First, we tested
whether the methods capture known historical
shifts in meaning. The goal in this task is for
the methods to correctly capture whether pairs of
words moved closer or further apart in semantic
space during a pre-determined time-period. We
use a set of independently attested shifts as an
evaluation set (Table 2). For comparison, we eval-
uated the methods on both the large (but messy)
ENGALL data and the smaller (but clean) COHA
data. On this task, all the methods performed
almost perfectly in terms of capturing the correct
directionality of the shifts (i.e., the pairwise
similarity series have the correct sign on their
Spearman correlation with time), but there were
some differences in whether the methods deemed
the shifts statistically significant at the p < 0.05
level.7 Overall, SGNS performed the best on the
full English data, but its performance dropped
significantly on the smaller COHA dataset, where
SVD performed best. PPMI was noticeably worse
than the other two approaches (Table 3).

Discovering shifts from data. We tested
whether the methods discover reasonable shifts

7All subsequent significance tests are at p < 0.05.

by examining the top-10 words that changed the
most from the 1900s to the 1990s according to
the semantic displacement metric introduced in
Section 2.4 (limiting our analysis to words with
relative frequencies above 10�5 in both decades).
We used the ENGFIC data as the most-changed
list for ENGALL was dominated by scientific
terms due to changes in the corpus sample.

Table 4 shows the top-10 words discovered by
each method. These shifts were judged by the au-
thors as being either clearly genuine, borderline,
or clearly corpus artifacts. SGNS performed by
far the best on this task, with 70% of its top-10
list corresponding to genuine semantic shifts, fol-
lowed by 40% for SVD, and 10% for PPMI. How-
ever, a large portion of the discovered words for
PPMI (and less so SVD) correspond to borderline
cases, e.g. know, that have not necessarily shifted
significantly in meaning but that occur in differ-
ent contexts due to global genre/discourse shifts.
The poor quality of the nearest neighbors gener-
ated by the PPMI algorithm—which are skewed
by PPMI’s sensitivity to rare events—also made
it difficult to assess the quality of its discovered
shifts. SVD was the most sensitive to corpus arti-
facts (e.g., co-occurrences due to cover pages and
advertisements), but it still captured a number of
genuine semantic shifts.

We opted for this small evaluation set and re-
lied on detailed expert judgments to minimize am-
biguity; each potential shift was analyzed in detail
by consulting consulting existing literature (espe-
cially the OED; Simpson et al., 1989) and all dis-
agreements were discussed.

Table 5 details representative example shifts in
English, French, and German. Chinese lacks suf-
ficient historical data for this task, as only years
1950-1999 are usable; however, we do still see
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change and from the Oxford English Dictionary (OED), e.g. using ‘obsolete’ tags. The shift start points were estimated using
attestation dates in the OED. The first six examples are words that shifted dramatically in meaning while the remaining four are
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ture the attested shifts from Table 2. SGNS and SVD capture
the correct directionality of the shifts in all cases (%Correct),
e.g., gay becomes more similar to homosexual, but there are
differences in whether the methods deem the shifts to be sta-
tistically significant at the p < 0.05 level (%Sig).

Detecting known shifts. First, we tested
whether the methods capture known historical
shifts in meaning. The goal in this task is for
the methods to correctly capture whether pairs of
words moved closer or further apart in semantic
space during a pre-determined time-period. We
use a set of independently attested shifts as an
evaluation set (Table 2). For comparison, we eval-
uated the methods on both the large (but messy)
ENGALL data and the smaller (but clean) COHA
data. On this task, all the methods performed
almost perfectly in terms of capturing the correct
directionality of the shifts (i.e., the pairwise
similarity series have the correct sign on their
Spearman correlation with time), but there were
some differences in whether the methods deemed
the shifts statistically significant at the p < 0.05
level.7 Overall, SGNS performed the best on the
full English data, but its performance dropped
significantly on the smaller COHA dataset, where
SVD performed best. PPMI was noticeably worse
than the other two approaches (Table 3).

Discovering shifts from data. We tested
whether the methods discover reasonable shifts

7All subsequent significance tests are at p < 0.05.

by examining the top-10 words that changed the
most from the 1900s to the 1990s according to
the semantic displacement metric introduced in
Section 2.4 (limiting our analysis to words with
relative frequencies above 10�5 in both decades).
We used the ENGFIC data as the most-changed
list for ENGALL was dominated by scientific
terms due to changes in the corpus sample.

Table 4 shows the top-10 words discovered by
each method. These shifts were judged by the au-
thors as being either clearly genuine, borderline,
or clearly corpus artifacts. SGNS performed by
far the best on this task, with 70% of its top-10
list corresponding to genuine semantic shifts, fol-
lowed by 40% for SVD, and 10% for PPMI. How-
ever, a large portion of the discovered words for
PPMI (and less so SVD) correspond to borderline
cases, e.g. know, that have not necessarily shifted
significantly in meaning but that occur in differ-
ent contexts due to global genre/discourse shifts.
The poor quality of the nearest neighbors gener-
ated by the PPMI algorithm—which are skewed
by PPMI’s sensitivity to rare events—also made
it difficult to assess the quality of its discovered
shifts. SVD was the most sensitive to corpus arti-
facts (e.g., co-occurrences due to cover pages and
advertisements), but it still captured a number of
genuine semantic shifts.

We opted for this small evaluation set and re-
lied on detailed expert judgments to minimize am-
biguity; each potential shift was analyzed in detail
by consulting consulting existing literature (espe-
cially the OED; Simpson et al., 1989) and all dis-
agreements were discussed.

Table 5 details representative example shifts in
English, French, and German. Chinese lacks suf-
ficient historical data for this task, as only years
1950-1999 are usable; however, we do still see

2.3 Aligning historical embeddings
In order to compare word vectors from differ-
ent time-periods we must ensure that the vectors
are aligned to the same coordinate axes. Ex-
plicit PPMI vectors are naturally aligned, as each
column simply corresponds to a context word.
Low-dimensional embeddings will not be natu-
rally aligned due to the non-unique nature of the
SVD and the stochastic nature of SGNS. In par-
ticular, both these methods may result in arbi-
trary orthogonal transformations, which do not af-
fect pairwise cosine-similarities within-years but
will preclude comparison of the same word across
time. Previous work circumvented this problem
by either avoiding low-dimensional embeddings
(e.g., Gulordava and Baroni, 2011; Jatowt and
Duh, 2014) or by performing heuristic local align-
ments per word (Kulkarni et al., 2014).

We use orthogonal Procrustes to align the
learned low-dimensional embeddings. Defining
W(t) 2 Rd⇥|V| as the matrix of word embeddings
learned at year t, we align across time-periods
while preserving cosine similarities by optimizing:

R(t) = arg min
Q>Q=I

kW(t)Q�W(t+1)kF , (4)

with R(t) 2 Rd⇥d. The solution corresponds
to the best rotational alignment and can be ob-
tained efficiently using an application of SVD
(Schönemann, 1966).

2.4 Time-series from historical embeddings
Diachronic word embeddings can be used in two
ways to quantify semantic change: (i) we can mea-
sure changes in pair-wise word similarities over
time, or (ii) we can measure how an individual
word’s embedding shifts over time.

Pair-wise similarity time-series Measuring
how the cosine-similarity between pairs of words
changes over time allows us to test hypotheses
about specific linguistic or cultural shifts in a con-
trolled manner. We quantify shifts by computing
the similarity time-series

s(t)(wi, wj) = cos-sim(w(t)
i ,w(t)

j ) (5)

between two words wi and wj over a time-period
(t, ..., t + �). We then measure the Spearman
correlation (⇢) of this series against time, which
allows us to assess the magnitude and signifi-
cance of pairwise similarity shifts; since the Spear-
man correlation is non-parametric, this measure

essentially detects whether the similarity series in-
creased/decreased over time in a significant man-
ner, regardless of the ‘shape’ of this curve.6

Measuring semantic displacement After
aligning the embeddings for individual time-
periods, we can use the aligned word vectors to
compute the semantic displacement that a word
has undergone during a certain time-period. In
particular, we can directly compute the cosine-
distance between a word’s representation for
different time-periods, i.e. cos-dist(wt,wt+�),
as a measure of semantic change. We can also
use this measure to quantify ‘rates’ of semantic
change for different words by looking at the
displacement between consecutive time-points.

3 Comparison of different approaches

We compare the different distributional ap-
proaches on a set of benchmarks designed to test
their scientific utility. We evaluate both their syn-
chronic accuracy (i.e., ability to capture word sim-
ilarity within individual time-periods) and their di-
achronic validity (i.e., ability to quantify semantic
changes over time).

3.1 Synchronic Accuracy
We evaluated the synchronic (within-time-period)
accuracy of the methods using a standard modern
benchmark and the 1990s portion of the ENGALL
data. On Bruni et al. (2012)’s MEN similarity task
of matching human judgments of word similari-
ties, SVD performed best (⇢ = 0.739), followed
by PPMI (⇢ = 0.687) and SGNS (⇢ = 0.649).
These results echo the findings of Levy et al.
(2015), who found SVD to perform best on sim-
ilarity tasks while SGNS performed best on anal-
ogy tasks (which are not the focus of this work).

3.2 Diachronic Validity
We evaluate the diachronic validity of the methods
on two historical semantic tasks: detecting known
shifts and discovering shifts from data. For both
these tasks, we performed detailed evaluations on
a small set of examples (28 known shifts and the
top-10 “discovered” shifts by each method). Us-
ing these reasonably-sized evaluation sets allowed
the authors to evaluate each case rigorously using
existing literature and historical corpora.

6Other metrics or change-point detection approaches, e.g.
mean shifts (Kulkarni et al., 2014) could also be used.



Method Top-10 words that changed from 1900s to 1990s
PPMI know, got, would, decided, think, stop, remember, started, must, wanted
SVD harry, headed, calls, gay, wherever, male, actually, special, cover, naturally
SGNS wanting, gay, check, starting, major, actually, touching, harry, headed, romance

Table 4: Top-10 English words with the highest semantic displacement values between the 1900s and 1990s. Bolded entries
correspond to real semantic shifts, as deemed by examining the literature and their nearest neighbors; for example, headed
shifted from primarily referring to the “top of a body/entity” to referring to “a direction of travel.” Underlined entries are
borderline cases that are largely due to global genre/discourse shifts; for example, male has not changed in meaning, but its
usage in discussions of “gender equality” is relatively new. Finally, unmarked entries are clear corpus artifacts; for example,
special, cover, and romance are artifacts from the covers of fiction books occasionally including advertisements etc.

Word Language Nearest-neighbors in 1900s Nearest-neighbors in 1990s
wanting English lacking, deficient, lacked, lack, needed wanted, something, wishing, anything,

anybody
asile French refuge, asiles, hospice, vieillards, in-

firmerie
demandeurs, refuge, hospice, visas, ad-
mission

widerstand German scheiterte, volt, stromstärke, leisten,
brechen

opposition, verfolgung, nationalsozialis-
tische, nationalsozialismus, kollaboration

Table 5: Example words that changed dramatically in meaning in three languages, discovered using SGNS embeddings. The
examples were selected from the top-10 most-changed lists between 1900s and 1990s as in Table 4. In English, wanting
underwent subjectification and shifted from meaning “lacking” to referring to subjective ”desire”, as in “the education system
is wanting” (1900s) vs. ”I’ve been wanting to tell you” (1990s). In French asile (“asylum”) shifted from primarily referring
to “hospitals, or infirmaries” to also referring to “asylum seekers, or refugees”. Finally, in German Widerstand (“resistance”)
gained a formal meaning as referring to the local German resistance to Nazism during World War II.

some significant changes for Chinese in this short
time-period, such as ≈“ (“virus”) moving closer
to5⌘ (“computer”, ⇢ = 0.89).

3.3 Methodological recommendations

PPMI is clearly worse than the other two meth-
ods; it performs poorly on all the benchmark tasks,
is extremely sensitive to rare events, and is prone
to false discoveries from global genre shifts. Be-
tween SVD and SGNS the results are somewhat
equivocal, as both perform best on two out of the
four tasks (synchronic accuracy, ENGALL detec-
tion, COHA detection, discovery). Overall, SVD
performs best on the synchronic accuracy task and
has higher average accuracy on the ‘detection’
task, while SGNS performs best on the ‘discov-
ery’ task. These results suggest that both these
methods are reasonable choices for studies of se-
mantic change but that they each have their own
tradeoffs: SVD is more sensitive, as it performs
well on detection tasks even when using a small
dataset, but this sensitivity also results in false dis-
coveries due to corpus artifacts. In contrast, SGNS
is robust to corpus artifacts in the discovery task,
but it is not sensitive enough to perform well on the
detection task with a small dataset. Qualitatively,
we found SGNS to be most useful for discovering
new shifts and visualizing changes (e.g., Figure 1),

while SVD was most effective for detecting subtle
shifts in usage.

4 Statistical laws of semantic change

We now show how diachronic embeddings can be
used in a large-scale cross-linguistic analysis to re-
veal statistical laws that relate frequency and pol-
ysemy to semantic change. In particular, we ana-
lyze how a word’s rate of semantic change,

�(t)(wi) = cos-dist(w(t)
i ,w(t+1)

i ) (6)

depends on its frequency, f (t)(wi) and a measure
of its polysemy, d(t)(wi) (defined in Section 4.4).

4.1 Setup
We present results using SVD embeddings
(though analogous results were found to hold with
SGNS). Using all four languages and all four
conditions for English (ENGALL, ENGFIC, and
COHA with and without lemmatization), we per-
formed regression analysis on rates of seman-
tic change, �(t)(wi); thus, we examined one
data-point per word for each pair of consecutive
decades and analyzed how a word’s frequency
and polysemy at time t correlate with its degree
of semantic displacement over the next decade.
To ensure the robustness of our results, we ana-
lyzed only the top-10000 non–stop words by aver-

Method Top-10 words that changed from 1900s to 1990s
PPMI know, got, would, decided, think, stop, remember, started, must, wanted
SVD harry, headed, calls, gay, wherever, male, actually, special, cover, naturally
SGNS wanting, gay, check, starting, major, actually, touching, harry, headed, romance

Table 4: Top-10 English words with the highest semantic displacement values between the 1900s and 1990s. Bolded entries
correspond to real semantic shifts, as deemed by examining the literature and their nearest neighbors; for example, headed
shifted from primarily referring to the “top of a body/entity” to referring to “a direction of travel.” Underlined entries are
borderline cases that are largely due to global genre/discourse shifts; for example, male has not changed in meaning, but its
usage in discussions of “gender equality” is relatively new. Finally, unmarked entries are clear corpus artifacts; for example,
special, cover, and romance are artifacts from the covers of fiction books occasionally including advertisements etc.

Word Language Nearest-neighbors in 1900s Nearest-neighbors in 1990s
wanting English lacking, deficient, lacked, lack, needed wanted, something, wishing, anything,

anybody
asile French refuge, asiles, hospice, vieillards, in-

firmerie
demandeurs, refuge, hospice, visas, ad-
mission

widerstand German scheiterte, volt, stromstärke, leisten,
brechen

opposition, verfolgung, nationalsozialis-
tische, nationalsozialismus, kollaboration

Table 5: Example words that changed dramatically in meaning in three languages, discovered using SGNS embeddings. The
examples were selected from the top-10 most-changed lists between 1900s and 1990s as in Table 4. In English, wanting
underwent subjectification and shifted from meaning “lacking” to referring to subjective ”desire”, as in “the education system
is wanting” (1900s) vs. ”I’ve been wanting to tell you” (1990s). In French asile (“asylum”) shifted from primarily referring
to “hospitals, or infirmaries” to also referring to “asylum seekers, or refugees”. Finally, in German Widerstand (“resistance”)
gained a formal meaning as referring to the local German resistance to Nazism during World War II.

some significant changes for Chinese in this short
time-period, such as ≈“ (“virus”) moving closer
to5⌘ (“computer”, ⇢ = 0.89).
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detection task with a small dataset. Qualitatively,
we found SGNS to be most useful for discovering
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used in a large-scale cross-linguistic analysis to re-
veal statistical laws that relate frequency and pol-
ysemy to semantic change. In particular, we ana-
lyze how a word’s rate of semantic change,

�(t)(wi) = cos-dist(w(t)
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i ) (6)

depends on its frequency, f (t)(wi) and a measure
of its polysemy, d(t)(wi) (defined in Section 4.4).

4.1 Setup
We present results using SVD embeddings
(though analogous results were found to hold with
SGNS). Using all four languages and all four
conditions for English (ENGALL, ENGFIC, and
COHA with and without lemmatization), we per-
formed regression analysis on rates of seman-
tic change, �(t)(wi); thus, we examined one
data-point per word for each pair of consecutive
decades and analyzed how a word’s frequency
and polysemy at time t correlate with its degree
of semantic displacement over the next decade.
To ensure the robustness of our results, we ana-
lyzed only the top-10000 non–stop words by aver-

2.3 Aligning historical embeddings
In order to compare word vectors from differ-
ent time-periods we must ensure that the vectors
are aligned to the same coordinate axes. Ex-
plicit PPMI vectors are naturally aligned, as each
column simply corresponds to a context word.
Low-dimensional embeddings will not be natu-
rally aligned due to the non-unique nature of the
SVD and the stochastic nature of SGNS. In par-
ticular, both these methods may result in arbi-
trary orthogonal transformations, which do not af-
fect pairwise cosine-similarities within-years but
will preclude comparison of the same word across
time. Previous work circumvented this problem
by either avoiding low-dimensional embeddings
(e.g., Gulordava and Baroni, 2011; Jatowt and
Duh, 2014) or by performing heuristic local align-
ments per word (Kulkarni et al., 2014).

We use orthogonal Procrustes to align the
learned low-dimensional embeddings. Defining
W(t) 2 Rd⇥|V| as the matrix of word embeddings
learned at year t, we align across time-periods
while preserving cosine similarities by optimizing:

R(t) = arg min
Q>Q=I

kW(t)Q�W(t+1)kF , (4)

with R(t) 2 Rd⇥d. The solution corresponds
to the best rotational alignment and can be ob-
tained efficiently using an application of SVD
(Schönemann, 1966).

2.4 Time-series from historical embeddings
Diachronic word embeddings can be used in two
ways to quantify semantic change: (i) we can mea-
sure changes in pair-wise word similarities over
time, or (ii) we can measure how an individual
word’s embedding shifts over time.

Pair-wise similarity time-series Measuring
how the cosine-similarity between pairs of words
changes over time allows us to test hypotheses
about specific linguistic or cultural shifts in a con-
trolled manner. We quantify shifts by computing
the similarity time-series

s(t)(wi, wj) = cos-sim(w(t)
i ,w(t)

j ) (5)

between two words wi and wj over a time-period
(t, ..., t + �). We then measure the Spearman
correlation (⇢) of this series against time, which
allows us to assess the magnitude and signifi-
cance of pairwise similarity shifts; since the Spear-
man correlation is non-parametric, this measure

essentially detects whether the similarity series in-
creased/decreased over time in a significant man-
ner, regardless of the ‘shape’ of this curve.6

Measuring semantic displacement After
aligning the embeddings for individual time-
periods, we can use the aligned word vectors to
compute the semantic displacement that a word
has undergone during a certain time-period. In
particular, we can directly compute the cosine-
distance between a word’s representation for
different time-periods, i.e. cos-dist(wt,wt+�),
as a measure of semantic change. We can also
use this measure to quantify ‘rates’ of semantic
change for different words by looking at the
displacement between consecutive time-points.

3 Comparison of different approaches

We compare the different distributional ap-
proaches on a set of benchmarks designed to test
their scientific utility. We evaluate both their syn-
chronic accuracy (i.e., ability to capture word sim-
ilarity within individual time-periods) and their di-
achronic validity (i.e., ability to quantify semantic
changes over time).

3.1 Synchronic Accuracy
We evaluated the synchronic (within-time-period)
accuracy of the methods using a standard modern
benchmark and the 1990s portion of the ENGALL
data. On Bruni et al. (2012)’s MEN similarity task
of matching human judgments of word similari-
ties, SVD performed best (⇢ = 0.739), followed
by PPMI (⇢ = 0.687) and SGNS (⇢ = 0.649).
These results echo the findings of Levy et al.
(2015), who found SVD to perform best on sim-
ilarity tasks while SGNS performed best on anal-
ogy tasks (which are not the focus of this work).

3.2 Diachronic Validity
We evaluate the diachronic validity of the methods
on two historical semantic tasks: detecting known
shifts and discovering shifts from data. For both
these tasks, we performed detailed evaluations on
a small set of examples (28 known shifts and the
top-10 “discovered” shifts by each method). Us-
ing these reasonably-sized evaluation sets allowed
the authors to evaluate each case rigorously using
existing literature and historical corpora.

6Other metrics or change-point detection approaches, e.g.
mean shifts (Kulkarni et al., 2014) could also be used.
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(a) apple (b) amazon (c) obama (d) trump

Figure 1: Trajectories of brand names and people through time: apple, amazon, obama, and trump.

In practice, however, BCD is highly successful and has been used
in many applications [38]. Another choice of optimization is sto-
chastic gradient descent (SGD), which decomposes the objective as
a sum of smaller terms. For example, the �rst term of (8) can be
written as a sum of terms, each using only one row of Y (t):

f (U (t)) =
V’
i=1

kY (t)[i, :] � ui (t)TW (t)k2F . (9)

The complexity at �rst glance is smaller than that of BCD; how-
ever, SGD comes with the well-documented issues of slow progress
and hard-to-tune step sizes, and in practice, can be much slower for
matrix factorization applications [30, 39]. However, we point out
that the choice of the optimization method is agnostic to our model;
anything that successfully solves (5) should lead to an equally suc-
cessful embedding.

4 EXPERIMENTAL DATASET AND SETUP
In this section we describe the speci�c procedure used to generate
embeddings for the next two sections.
News article dataset: First, we crawl a total of 99,872 articles from
the New York Times, published between January 1990 and July
2016.4 In addition to the text, we also collected metadata including
title, author, release date, and section label (e.g., Business, Sports,
Technology); in total, there are 59 such sections. We use yearly time
slices, dividing the corpus into T = 27 partitions. After removing
rare words (fewer than 200 occurrences in all articles across time)
and stop words, our vocabulary consists of V = 20, 936 unique
words. We then compute a co-occurrence matrix for each time slice
t with a window size L = 5, which is then used to compute the
PPMI matrix as outlined in (3). All the embedding methods that we
compared against are trained on this same dataset.
Training details for our algorithm: We perform a grid search to
�nd the best regularization and optimization parameters. As a result
of our search, we obtain � = 10, � = � = 50, and run for 5 epochs (5
complete pass over all time slices, and all rows and columns ofY (t)).
Interestingly, setting � = 0 also yielded good results, but required
more iterations to converge. The block variable is one matrix (U (t)
or V (t) for a speci�c t ).
Distance metric: All distances between two words are calculated
by the cosine similarity between embedding vectors:
4The data is available at: https://sites.google.com/site/zijunyaorutgers/.

similarity(a,b) = cosine(ua ,ub ) =
uTaub

kua k2 · kub k2
, (10)

where ua and ub are the embeddings of words a and b.

5 QUALITATIVE EVALUATION
The embeddings we learn reveal interesting patterns in the shift
of word semantics, cross-time semantic analogy, and popularity
trends of concepts from the news corpus.

5.1 Trajectory visualization
The trajectory of a word in the (properly aligned) embedded space
provides tools to understand the shift in meanings of words over
time. This can help broader applications, such as capturing and
quantifying linguistic evolution, characterizing brands and people,
and analyzing emerging association between certain words.

Figure 1 shows the trajectories of a set of example words. We
plot the 2-D t-SNE projection of each word’s temporal embedding
across time. We also plot the closest words to the target word from
each time slice. We pick four words of interest: apple and amazon
as emerging corporate names while originally referring to a fruit
and a rainforest, and obama and trump as people with changing
professional roles.

In all cases, the embeddings illustrate signi�cant semantic shifts
of the words of interest during this 27-year time frame. We see
apple shift from a fruit and dessert ingredient to space of technol-
ogy. Interestingly, there is a spike in 1994 in the trajectory, when
Apple led a short tide of discussion because of the replacement of
the CEO and a collaboration with IBM; then the association shifted
back to neighborhood of fruit and dessert until the recovery by
Steve Jobs in early 2000s. Similarly, amazon shifts from a forest to an
e-commerce company, �nally landing in 2016 as a content creation
and online-streaming provider due to the popularity of its Prime
Video service. The US president names, obama and trump, are most
telling, shifting from their pre-presidential lives (Obama as a civil
rights attorney and university professor; Trump as a real estate
developer and TV celebrity) to the political sphere. Overall, Figure
1 demonstrates that �rst, our temporal word embeddings can well
capture the semantic shifts of words across time, and second, our
model provides high alignment quality in that same-meaning words
across di�erent years have geometrically close embeddings, without
having to solve a separate optimization problem for alignment.
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ABSTRACT
Word evolution refers to the changing meanings and associations
of words throughout time, as a byproduct of human language evo-
lution. By studying word evolution, we can infer social trends and
language constructs over di�erent periods of human history. How-
ever, traditional techniques such as word representation learning
do not adequately capture the evolving language structure and
vocabulary. In this paper, we develop a dynamic statistical model to
learn time-aware word vector representation. We propose a model
that simultaneously learns time-aware embeddings and solves the
resulting “alignment problem”. This model is trained on a crawled
NYTimes dataset. Additionally, we develop multiple intuitive eval-
uation strategies of temporal word embeddings. Our qualitative
and quantitative tests indicate that our method not only reliably
captures this evolution over time, but also consistently outperforms
state-of-the-art temporal embedding approaches on both semantic
accuracy and alignment quality.
ACM Reference Format:
Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and Hui Xiong. 2018.
Dynamic Word Embeddings for Evolving Semantic Discovery. In WSDM
2018: The Eleventh ACM International Conference on Web Search and Data
Mining, February 5–9, 2018, Marina Del Rey, CA, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3159652.3159703

1 INTRODUCTION
Human language is an evolving construct, with word semantic
associations changing over time. For example, apple which was
traditionally only associated with fruits, is now also associated
with a technology company. Similarly, the association of names of
famous personalities (e.g., trump) changes with a change in their
roles. For this reason, understanding and tracking word evolution
is useful for time-aware knowledge extraction tasks (e.g., public
sentiment analysis), and other applications in text mining. To this
end, we aim to learn word embeddings with a temporal bent, for
capturing time-aware meanings of words.

Word embeddings aim to represent words with low-dimensional
vectors, where words with similar semantics are geometrically
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fee. Request permissions from permissions@acm.org.
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© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
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closer (e.g. red and blue are closer than red and squirrel). Clas-
sic word embedding techniques started in the 90s and relied on
statistical approaches [9, 20]. Later, neural network approaches [5],
as well as recent advances such as word2vec [24, 25] and GloVE
[27] have greatly improved the performance of word representa-
tion learning. However, these techniques usually do not consider
temporal factors, and assume that the word is static across time.

In this paper, we are interested in computing time-aware embed-
ding of words. Speci�cally, each word in a di�erent time frame (e.g.,
years) is represented by a di�erent vector. From these embeddings,
we have a better notion of “distance” (the cosine distance between
word embedding vectors), and by looking at word “neighborhoods”
(de�ned through this distance), we can better understand word
associations as well as word meanings, as they evolve over time.

For instance, by locating the embeddings of personality names
such as trump’s closest words, we can see that he can be associated
with the trajectory : real estate! television! republican.
Similarly, the trajectory of apple travels from the neighborhood
of strawberry, mango to that of iphone, ipad.

A key practical issue of learning di�erent word embeddings for
di�erent time periods is alignment. Speci�cally, most cost functions
for training are invariant to rotations, as a byproduct, the learned
embeddings across time may not be placed in the same latent space.
We call this the alignment problem, which is an issue in general if
embeddings are learned independently for each time slice.

Unlike traditional methods, literature on learning temporal word
embedding is relatively short: [12, 15, 19, 40]. In general, the ap-
proaches in these works follow a similar two-step pattern: �rst
compute static word embeddings in each time slice separately, then
�nd a way to align the word embeddings across time slices. To
achieve alignment, [15] �nds a linear transformation of words be-
tween any two time slices by solving a d-dimensional least squares
problem of k nearest neighbor words (where d is the embedding
dimension). Additionally, [40] also use the linear transformation
approach between a base and target time slices, and computes the
linear transformation using anchor words, which does not change
meaning between the two time slices. This method requires the
prior knowledge of words that are in fact static, which involves
additional expert supervision. Finally, [12] imposes the transfor-
mation to be orthogonal, and solves a d-dimensional Procrustes
problem between every two adjacent time slices.

Our main novelty in this paper is to learn the word embeddings
across time jointly, thus obviating the need to solve a separate
alignment problem. Speci�cally, we propose to learn temporal em-
beddings in all time slices concurrently, and apply regularization
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Table 1: Equivalent technologies through time: iphone,
twitter, and mp3.

Query iphone, 2012 twitter, 2012 mp3, 2000
90-94 desktop, pc,

dos, macintosh,
software

broadcast, cnn,
bulletin, tv,
radio,
messages,
correspondents

stereo, disk,
disks, audio

95-96
mp3

97
chat, messages,
emails, web

98-02
pc03 napster

04 mp3
05-06 ipod blog, posted itunes,

downloaded
07-08 iphone09-12

twitter13-16 smartphone,
iphone

5.2 Equivalence searching
Another key advantage of word alignment is the ability to �nd
conceptually “equivalent” items or people over time. We provide
examples in the �eld of technology, o�cial roles, and sports pro-
fessionals. In this type of test, we create a query consisting of a
word-year pair that is particularly the representative of that word
in that year, and look for other word-year pairs in its vicinity, for
di�erent years.

Table 1 lists the closest words (top-1) of each year to the query
vector. For visualization purpose we lump semantically similar
words together. For example, the �rst column shows that iphone
in 2012 is closely associated with smartphones in recent years, but
is close to words such as desktop and macintosh in the 90’s; inter-
estingly, telephone never appears, suggesting the iPhone serves
people more as a portable computer than a calling device. As an-
other example, by looking at the trajectory of twitter, we see
the evolution of news sources, from TV & radio news broadcasts
in the 90s to chatrooms, websites, and emails in the early 2000s,
blogs in the late 2000s, and �nally tweets today. The last example
is fairly obvious; mp3 represents the main form of which music is
consumed in 2000, replacing disk and stereo in 1990s ( cassette
also appears in top-3) and is later replaced by online streaming. We
can see a one-year spike of Napster which was shut down because
of copyright infringement5, and later a new streaming service -
iTunes.

Next, we use embeddings to identify people in political roles.
Table 2 attempts to discover who is the U.S. president6 andNewYork
City mayor7 of the time, using as query obama in 2016 and blasio
in 2015. For president, only the closest word from each year is listed,
and is always correct (accounting for the election years). For mayor,
the top-1 closet word is shown unless it is mayor, in which case
the second word is shown. We can see that both the roles of US
president and NYC mayor have been well searched for di�erent

5Napster ended its streaming service in 2001, so our equivalence is captured 2 years late;
this delay could be because though the event happened in 2001, the legal rami�cations
were analyzed heavily in subsequent years.
6All data was scraped about half a year before Donald Trump was elected as U.S.
president in 2016.
7We intentionally choose New York City because it is the most heavily discussed city
in the New York Times.

Table 2: “Who governed?” The closest word to obama at year
2016 (role as president of United State) and blasio at year
2015 (role as mayor of New York City (NYC)). The stars indi-
cate incorrect answers.

Question US president NYC mayor
Query obama, 2016 blasio, 2015
90-92 bush dinkins93 clinton94-00 giuliani01

bush
02-05 bloomberg
06 n/a*
07

bloomberg08
09-10

obama11 cuomo*
12 bloomberg

13-16 blasio

Table 3: “Who was the ATP No.1 ranked male player?” The
closest word to nadal at year 2010 for each year is listed. The
correct answer is based on ATP year-end ranking and are
bolded in the table.

year 1990 1991 1992 1993
word edberg lendl sampras sampras
1994 1995 1996 1997 1998

sampras sampras ivanisevic sampras sampras
1999 2000 2001 2002 2003

sampras sampras agassi capriati roddick
2004 2005 2006 2007 2008

federer federer roddick federer nadal
2009 2010 2011 2012 2013

federer nadal djokovic federer federer
2014 2015

federer djokovic

persons in their terms of service. We see that the embedding for
the President is consistent, and for the most part, so is that of the
mayor of NYC. In 2011, cuomo is also partially relevant since he
was the governor of NY state. We did not �nd any relevant words
in query NYC mayor in year 2006.

Finally, we search for equivalences in sports, repeating the exper-
iment for the ATP rank 1 male tennis player as shown in Table 3. In
the case of president and mayor, we are heavily assisted by the fact
that they are commonly referred to by a title: “President Obama”
and “Mayor de Blasio”. Tennis champions, on the other hand, are
not referred by titles. Still, a surprising number of correct cham-
pions appear as the closest words, and all the names are those of
famous tennis players for the given time period. A more exhaustive
empirical study of alignment quality is provided in Section 6.

5.3 Popularity determination
It has often been observed that word embeddings computed by fac-
torizing PMI matrices have norms that grow with word frequency
[2, 27]. These word vector norms across time can be viewed as a

Table 1: Equivalent technologies through time: iphone,
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iphone
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fessionals. In this type of test, we create a query consisting of a
word-year pair that is particularly the representative of that word
in that year, and look for other word-year pairs in its vicinity, for
di�erent years.

Table 1 lists the closest words (top-1) of each year to the query
vector. For visualization purpose we lump semantically similar
words together. For example, the �rst column shows that iphone
in 2012 is closely associated with smartphones in recent years, but
is close to words such as desktop and macintosh in the 90’s; inter-
estingly, telephone never appears, suggesting the iPhone serves
people more as a portable computer than a calling device. As an-
other example, by looking at the trajectory of twitter, we see
the evolution of news sources, from TV & radio news broadcasts
in the 90s to chatrooms, websites, and emails in the early 2000s,
blogs in the late 2000s, and �nally tweets today. The last example
is fairly obvious; mp3 represents the main form of which music is
consumed in 2000, replacing disk and stereo in 1990s ( cassette
also appears in top-3) and is later replaced by online streaming. We
can see a one-year spike of Napster which was shut down because
of copyright infringement5, and later a new streaming service -
iTunes.

Next, we use embeddings to identify people in political roles.
Table 2 attempts to discover who is the U.S. president6 andNewYork
City mayor7 of the time, using as query obama in 2016 and blasio
in 2015. For president, only the closest word from each year is listed,
and is always correct (accounting for the election years). For mayor,
the top-1 closet word is shown unless it is mayor, in which case
the second word is shown. We can see that both the roles of US
president and NYC mayor have been well searched for di�erent

5Napster ended its streaming service in 2001, so our equivalence is captured 2 years late;
this delay could be because though the event happened in 2001, the legal rami�cations
were analyzed heavily in subsequent years.
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7We intentionally choose New York City because it is the most heavily discussed city
in the New York Times.
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cate incorrect answers.

Question US president NYC mayor
Query obama, 2016 blasio, 2015
90-92 bush dinkins93 clinton94-00 giuliani01

bush
02-05 bloomberg
06 n/a*
07

bloomberg08
09-10

obama11 cuomo*
12 bloomberg

13-16 blasio

Table 3: “Who was the ATP No.1 ranked male player?” The
closest word to nadal at year 2010 for each year is listed. The
correct answer is based on ATP year-end ranking and are
bolded in the table.

year 1990 1991 1992 1993
word edberg lendl sampras sampras
1994 1995 1996 1997 1998

sampras sampras ivanisevic sampras sampras
1999 2000 2001 2002 2003

sampras sampras agassi capriati roddick
2004 2005 2006 2007 2008

federer federer roddick federer nadal
2009 2010 2011 2012 2013

federer nadal djokovic federer federer
2014 2015

federer djokovic

persons in their terms of service. We see that the embedding for
the President is consistent, and for the most part, so is that of the
mayor of NYC. In 2011, cuomo is also partially relevant since he
was the governor of NY state. We did not �nd any relevant words
in query NYC mayor in year 2006.

Finally, we search for equivalences in sports, repeating the exper-
iment for the ATP rank 1 male tennis player as shown in Table 3. In
the case of president and mayor, we are heavily assisted by the fact
that they are commonly referred to by a title: “President Obama”
and “Mayor de Blasio”. Tennis champions, on the other hand, are
not referred by titles. Still, a surprising number of correct cham-
pions appear as the closest words, and all the names are those of
famous tennis players for the given time period. A more exhaustive
empirical study of alignment quality is provided in Section 6.

5.3 Popularity determination
It has often been observed that word embeddings computed by fac-
torizing PMI matrices have norms that grow with word frequency
[2, 27]. These word vector norms across time can be viewed as a

Table 1: Equivalent technologies through time: iphone,
twitter, and mp3.

Query iphone, 2012 twitter, 2012 mp3, 2000
90-94 desktop, pc,

dos, macintosh,
software

broadcast, cnn,
bulletin, tv,
radio,
messages,
correspondents

stereo, disk,
disks, audio

95-96
mp3

97
chat, messages,
emails, web

98-02
pc03 napster

04 mp3
05-06 ipod blog, posted itunes,

downloaded
07-08 iphone09-12

twitter13-16 smartphone,
iphone

5.2 Equivalence searching
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conceptually “equivalent” items or people over time. We provide
examples in the �eld of technology, o�cial roles, and sports pro-
fessionals. In this type of test, we create a query consisting of a
word-year pair that is particularly the representative of that word
in that year, and look for other word-year pairs in its vicinity, for
di�erent years.

Table 1 lists the closest words (top-1) of each year to the query
vector. For visualization purpose we lump semantically similar
words together. For example, the �rst column shows that iphone
in 2012 is closely associated with smartphones in recent years, but
is close to words such as desktop and macintosh in the 90’s; inter-
estingly, telephone never appears, suggesting the iPhone serves
people more as a portable computer than a calling device. As an-
other example, by looking at the trajectory of twitter, we see
the evolution of news sources, from TV & radio news broadcasts
in the 90s to chatrooms, websites, and emails in the early 2000s,
blogs in the late 2000s, and �nally tweets today. The last example
is fairly obvious; mp3 represents the main form of which music is
consumed in 2000, replacing disk and stereo in 1990s ( cassette
also appears in top-3) and is later replaced by online streaming. We
can see a one-year spike of Napster which was shut down because
of copyright infringement5, and later a new streaming service -
iTunes.

Next, we use embeddings to identify people in political roles.
Table 2 attempts to discover who is the U.S. president6 andNewYork
City mayor7 of the time, using as query obama in 2016 and blasio
in 2015. For president, only the closest word from each year is listed,
and is always correct (accounting for the election years). For mayor,
the top-1 closet word is shown unless it is mayor, in which case
the second word is shown. We can see that both the roles of US
president and NYC mayor have been well searched for di�erent

5Napster ended its streaming service in 2001, so our equivalence is captured 2 years late;
this delay could be because though the event happened in 2001, the legal rami�cations
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6All data was scraped about half a year before Donald Trump was elected as U.S.
president in 2016.
7We intentionally choose New York City because it is the most heavily discussed city
in the New York Times.
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Abstract

Lexical Semantic Change detection, i.e., the task of identifying words that change meaning
over time, is a very active research area, with applications in NLP, lexicography, and linguistics.
Evaluation is currently the most pressing problem in Lexical Semantic Change detection, as no
gold standards are available to the community, which hinders progress. We present the results of
the first shared task that addresses this gap by providing researchers with an evaluation framework
and manually annotated, high-quality datasets for English, German, Latin, and Swedish. 33 teams
submitted 186 systems, which were evaluated on two subtasks.

1 Overview

Recent years have seen an exponentially rising interest in computational Lexical Semantic Change (LSC)
detection (Tahmasebi et al., 2018; Kutuzov et al., 2018). However, the field is lacking standard evaluation
tasks and data. Almost all papers differ in how the evaluation is performed and what factors are considered
in the evaluation. Very few are evaluated on a manually annotated diachronic corpus (McGillivray et al.,
2019; Perrone et al., 2019; Schlechtweg et al., 2019, e.g.). This puts a damper on the development of
computational models for LSC, and is a barrier for high-quality, comparable results that can be used in
follow-up tasks.

We report the results of the first SemEval shared task on Unsupervised LSC detection.1 We introduce
two related subtasks for computational LSC detection, which aim to identify the change in meaning of
words over time using corpus data. We provide a high-quality multilingual (English, German, Latin,
Swedish) LSC gold standard relying on approximately 100,000 instances of human judgment. For the
first time, it is possible to compare the variety of proposed models on relatively solid grounds and across
languages, and to put previously reached conclusions on trial. We may now provide answers to questions
concerning the performance of different types of semantic representations (such as token embeddings vs.
type embeddings, and topic models vs. vector space models), alignment methods and change measures.
We provide a thorough analysis of the submitted results uncovering trends for models and opening
perspectives for further improvements. In addition to this, the CodaLab website will remain open to
allow any reader to directly and easily compare their results to the participating systems. We expect the
long-term impact of the task to be significant, and hope to encourage the study of LSC in more languages
than are currently studied, in particular less-resourced languages.

2 Subtasks

For the proposed tasks we rely on the comparison of two time-specific corpora C1 and C2. While this
simplifies the LSC detection problem, it has two main advantages: (i) it reduces the number of time
periods for which data has to be annotated, so we can annotate larger corpus samples and hence more
reliably represent the sense distributions of target words; (ii) it reduces the task complexity, allowing

⇤SH was affiliated with the University of Helsinki and the University of Geneva for most of this work.
1https://languagechange.org/semeval. In the remainder of this paper, “CodaLab” refers to this URL.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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C1 C2

Senses chamber biology phone chamber biology phone
# uses 12 18 0 4 11 18

Table 1: An example of a sense frequency distribution for the word cell in C1 and C2.

different model architectures to be applied to it, widening the range of possible participants. Participants
were asked to solve two subtasks:

Subtask 1 Binary classification: for a set of target words, decide which words lost or gained sense(s)
between C1 and C2, and which ones did not.

Subtask 2 Ranking: rank a set of target words according to their degree of LSC between C1 and C2.

For Subtask 1, consider the example of cell in Table 1, where the sense ‘phone’ is newly acquired from
C1 to C2 because its frequency is 0 in C1 and > 0 in C2. Subtask 2, instead, captures fine-grained
changes in the two sense frequency distributions. For example, Table 1 shows that the frequency of the
sense ‘chamber’ drops from C1 to C2, although it is not totally lost. Such a change will increase the
degree of LSC for Subtask 2, but will not count as change in Subtask 1. The notion of LSC underlying
Subtask 1 is most relevant to historical linguistics and lexicography, while the majority of LSC detection
models are rather designed to solve Subtask 2. Hence, we expected Subtask 1 to be a challenge for most
models. Knowing whether, and to what degree a word has changed is crucial in other tasks, e.g. aiding in
understanding historical documents, searching for relevant content, or historical sentiment analysis. The
full LSC problem can be seen as a generalization of these two tasks into multiple time points where also
the type of change needs to be identified.

3 Data

The task took place in a realistic unsupervised learning scenario. Participants were provided with trial
and test data, but no training data. The public trial and test data consisted of a diachronic corpus pair
and a set of target words for each language. Participants’ predictions were evaluated against a set of
hidden gold labels. The trial data consisted of small samples from the test corpora (see below) and four
target words per language to which we assigned binary and graded gold labels randomly. Participants
could not use this data to develop their models, but only to test the data input format and the online
submission format. For development data participants were referred to three pre-existing diachronic data
sets: DURel (Schlechtweg et al., 2018), SemCor LSC (Schlechtweg and Schulte im Walde, 2020) and
WSC (Tahmasebi and Risse, 2017). In the evaluation phase participants were provided with the test
corpora and a set of target words for each language.2 Participants were asked to train their models only on
the corpora described in Table 2, though the use of pre-trained embeddings was allowed as long as they
were trained in a completely unsupervised way, i.e., not on manually annotated data.

3.1 Corpora
For English, we used the Clean Corpus of Historical American English (CCOHA) (Davies, 2012; Alatrash
et al., 2020), which spans 1810s–2000s. For German, we used the DTA corpus (Deutsches Textarchiv,
2017) and a combination of the BZ and ND corpora (Berliner Zeitung, 2018; Neues Deutschland, 2018).
DTA contains texts from different genres spanning the 16th–20th centuries. BZ and ND are newspaper
corpora jointly spanning 1945–1993. For Latin, we used the LatinISE corpus (McGillivray and Kilgarriff,
2013) spanning from the 2nd century B.C. to the 21st century A.D. For Swedish, we used the Kubhist
corpus (Språkbanken, Downloaded in 2019), a newspaper corpus containing texts from 18th–20th century.
The corpora are lemmatised and POS-tagged. CCOHA and DTA are spelling-normalized. BZ, ND and
Kubhist contain frequent OCR errors (Adesam et al., 2019; Hengchen et al., to appear).

From each corpus we extracted two time-specific subcorpora C1, C2, as defined in Table 2. The
division was driven by considerations of data size and availability of target words (see below). From these

2https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd



5 Evaluation

All teams were allowed a total of 10 submissions, the best of which was kept for the final ranking in the
competition. Participants had to submit predictions for both subtasks and all languages. A submission’s
final score for each subtask was computed as the average performance across all four languages. During
the evaluation phase, the leaderboard was hidden, as per SemEval recommendation.

5.1 Scoring Measures
For Subtask 1 submitted predictions were evaluated against the hidden labels via accuracy, given that we
anticipated the class distribution for target words to be approximately balanced before the annotation.
Scores are bounded between 0 and 1. As the distribution turned out to be imbalanced for some languages,
we also report F1-score in Appendix C. For Subtask 2, we used Spearman’s rank-order correlation
coefficient ⇢ with the gold rank. Spearman’s ⇢ only considers the order of the words, the actual predicted
change values were not taken into account. Ties are corrected by assigning the average of the ranks that
would have been assigned to all the tied values to each value (e.g. two words sharing rank 1 both get
assigned rank 1.5). Scores are bounded between �1 (completely opposite to true ranking) and 1 (exact
match).

5.2 Baselines
For both subtasks, we have two baselines: (i) Normalized frequency difference (Freq. Baseline) first
calculates the frequency for each target word in each of the two corpora, normalizes it by the total corpus
frequency and then calculates the absolute difference between these values as a measure of change.
(ii) Count vectors with column intersection and cosine distance (Count Baseline) first learns vector
representations for each of the two corpora, then aligns them by intersecting their columns and measures
change by cosine distance between the two vectors for a target word. A Python implementation of both
these baselines was provided in the starting kit. A third baseline, for Subtask 1, is the majority class
prediction (Maj. Baseline), i.e., always predicting the ‘0’ class (no change).

6 Participating Systems

Thirty-three teams participated in the task, totaling 53 members. The teams submitted a total of 186
submissions. Given the large number of teams, we provide a summary of the systems in the body of
this paper. A more detailed description of each participating system for which a paper was submitted is
available in Appendix B. We also encourage the reader to read the full system description papers.

Participating models can be described as a combination of (i) a semantic representation, (ii) an alignment
technique and (iii) a change measure. Semantic representations are mainly average embeddings (type
embeddings) and contextualized embeddings (token embeddings). Token embeddings are often combined
with a clustering algorithm such as K-means, affinity propagation (Frey and Dueck, 2007), (H)DBSCAN,
GMM, or agglomerative clustering. One team uses a graph-based semantic network, one a topic model
and several teams also propose ensemble models. Alignment techniques include Orthogonal Procrustes
(Hamilton et al., 2016, OP), Vector Initialization (Kim et al., 2014, VI), versions of Temporal Referencing
(Dubossarsky et al., 2019, TR), and Canonical Correlation Analysis (CCA). A variety of change measures
are applied, including Cosine Distance (CD), Euclidean Distance (ED), Local Neighborhood Distance
(LND), Kullback-Leibler Divergence (KLD), mean/standard deviation of co-occurrence vectors, or cluster
frequency. Table 5 shows the type of system for every team’s best submission for both subtasks.

7 Results

As illustrated by Table 5, UWB has the best performance in Subtask 1 for the average over all lan-
guages, closely followed by Life-Language, Jiaxin & Jinan14 and RPI-Trust.15 For Subtask 2,

14The team is named “LYNX” on the competition CodaLab.
15The team submits an ensemble model. As all of the features are derived from the type vectors, we classify it as “type” in this

section.



Team Subtask 1 SystemAvg. EN DE LA SV

UWB .687 .622 .750 .700 .677 type
Life-Language .686 .703 .750 .550 .742 type
Jiaxin & Jinan .665 .649 .729 .700 .581 type
RPI-Trust .660 .649 .750 .500 .742 type
UG Student Intern .639 .568 .729 .550 .710 type
DCC .637 .649 .667 .525 .710 type
NLP@IDSIA .637 .622 .625 .625 .677 token
JCT .636 .649 .688 .500 .710 type
Skurt .629 .568 .562 .675 .710 token
Discovery Team .621 .568 .688 .550 .677 ens.
Count Bas. .613 .595 .688 .525 .645 -
TUE .612 .568 .583 .650 .645 token
Entity .599 .676 .667 .475 .581 type
IMS .598 .541 .688 .550 .613 type
cs2020 .587 .595 .500 .575 .677 token
UiO-UvA .587 .541 .646 .450 .710 token
NLPCR .584 .730 .542 .450 .613 token
Maj. Bas. .576 .568 .646 .350 .742 -
cbk .554 .568 .625 .475 .548 token
Random .554 .486 .479 .475 .774 type
UoB .526 .568 .479 .575 .484 topic
UCD .521 .622 .500 .350 .613 graph
RIJP .511 .541 .500 .550 .452 type
Freq. Bas. .439 .432 .417 .650 .258 -

Team Subtask 2 SystemAvg. EN DE LA SV

UG Student Intern .527 .422 .725 .412 .547 type
Jiaxin & Jinan .518 .325 .717 .440 .588 type
cs2020 .503 .375 .702 .399 .536 type
UWB .481 .367 .697 .254 .604 type
Discovery Team .442 .361 .603 .460 .343 ens.
RPI-Trust .427 .228 .520 .462 .498 type
Skurt .374 .209 .656 .399 .234 token
IMS .372 .301 .659 .098 .432 type
UiO-UvA .370 .136 .695 .370 .278 token
Entity .352 .250 .499 .303 .357 type
Random .296 .211 .337 .253 .385 type
NLPCR .287 .436 .446 .151 .114 token
JCT .254 .014 .506 .419 .078 type
cbk .234 .059 .400 .341 .136 token
UCD .234 .307 .216 .069 .344 graph
Life-Language .218 .299 .208 -.024 .391 type
NLP@IDSIA .194 .028 .176 .253 .321 token
Count Bas. .144 .022 .216 .359 -.022 -
UoB .100 .105 .220 -.024 .102 topic
RIJP .087 .157 .099 .065 .028 type
TUE .087 -.155 .388 .177 -.062 token
DCC -.083 -.217 .014 .020 -.150 type
Freq. Bas. -.083 -.217 .014 .020 -.150 -
Maj. Bas. - - - - - -

Table 5: Summary of the performance of systems for which a system description paper was submitted, as
well as their type of semantic representation for that specific submission in Subtask 1 (left) and Subtask 2
(right). For each team, we report the values of accuracy (Subtask 1) and Spearman correlation (Subtask 2)
corresponding to their best submission in the evaluation phase. Abbreviations: Avg. = average across
languages, EN = English, DE = German, LA = Latin, and SV = Swedish, type = average embeddings,
token = contextualised embeddings, topic = topic model, ens. = ensemble, graph = graph, UCD =
University College Dublin.

UG Student Intern performs best, followed by Jiaxin & Jinan and cs2020.16 Across all systems,
good performance in Subtask 1 does not indicate good performance in Subtask 2 (correlation between
the system ranks is 0.22). However, and with the exception of Life-Language and cs2020, most top
performing systems in Subtask 1 also excel in Subtask 2, albeit with a slight change of ranking.

Remarkably, all the top performing systems use static-type embedding models, and differ only in
terms of their solutions to the alignment problem (Canonical Correlation Analysis, Orthogonal Procrustes,
or Temporal Referencing). Interestingly, the top systems refine their models using one or more of the
following steps: a) computing additional features from the embedding space; b) combining scores from
different models (or extracted features) using ensemble models; c) choosing a threshold for changed
words based on a distribution of change scores. We conjecture that these additional (and sometimes
very original) post-processing steps are crucial for these systems’ success. We now briefly describe the
top performing systems in terms of these three steps (for further details please see Appendix B). UWB
(SGNS+CCA+CD) sets the average change score as the threshold (c). Life-Language (SGNS) represents
words according to their distances to a set of stable pivot words in two unaligned spaces, and compares
their divergence relative to a distribution of change scores obtained from unstable pivot words (a+c). RPI-
Trust (SGNS+OP) extract features (a word’s cosine distance, change of distances to its nearest-neighbours
and change in frequency), transform each word’s feature to a CDF score, and averages these probabilities
(a+b+c). Jiaxin & Jinan (SGNS+TR+CD) fits the empirical cosine distance change scores to a Gamma
Quantile Threshold, and sets the 75% quantile as the threshold (c). UG Student Intern (SGNS+OP)
measures change using Euclidean distance instead of cosine distance. cs2020 uses SGNS+OP+CD only

16The team is named “cs2020” and “cs2021” on the competition CodaLab. The combined number of submissions made by the
two teams did not exceed the limit of 10.



as baseline method.
An important finding common to most systems is the difference between their performances across

the four languages – systems that excel in one language do not necessarily perform well in another. This
discrepancy may be due to a range of factors, including the difference in corpus size and the nature of the
corpus data, as well as the relative availability of resources in some languages such as English over others.
The Latin corpus, for example, covers a very long time span, and the lower performance of the systems
on this language may be explained by the fact that the techniques employed, especially word token/type
embeddings, have been developed for living languages and little research is available on their adaptation
to dead and ancient languages. In general, dead languages tend to pose additional challenges compared to
living languages (Piotrowski, 2012), due to a variety of factors, including their less-resourced status, lack
of native speakers, high linguistic variation and non-standardized spelling, and errors in Optical Character
Recognition (OCR). Other factors that should be investigated are data quality (Hill and Hengchen, 2019;
van Strien et al., 2020): while English and Latin are clean data, German and Swedish present notorious
OCR errors. The availability of tuned hyperparameters might have played a role as well: for German,
some teams report following prior work such as Schlechtweg et al. (2019). Finally, another factor for
the discrepancy in performance between languages for any given system is not related to the nature of
the systems nor of the data, but due to the fact that some teams focused on some languages, submitting
dummy results for the others.

Type versus token embeddings Tables 5 and 6 illustrate the gap in performance between type-based
embedding models and the token-based ones. Out of the best 10 systems in Subtask 1/Subtask 2, 7/8
systems are based on type embeddings compared to only 2/2 systems that are based on token embeddings
(same holds for each language individually). Contrary to the recent success of token embeddings (Peters
et al., 2018) and to commonly held view that contextual embeddings “do everything better”, they are
overwhelmingly outperformed by type embeddings in our task. This is most surprising for Subtask 1,
because type embeddings do not distinguish between different senses, while token embeddings do. We
suggest several possible reasons for these surprising results. The first is the fact that contextual embedding
is a recent technology, and as such lacks proper usage conventions. For example, it is not clear whether a
model should create an average token representation based on individual instances (and if so, which layers
should be averaged), or if it should use clustering of individual instances instead (and if so, what type of
clustering algorithm etc.). A second reason may be related to the fact that contextual models are pretrained
and cannot exclusively be trained on the relevant historical resources (in contrast to type embeddings). As
such, they carry additional, and possibly irrelevant, information that may mask true diachronic changes.
The results may also be related to the specific preprocessing we applied to the corpora: (i) Only restricted
context is available to the models as a result of the sentence shuffling. Usually, token-based models take
more context into account than just the immediate sentence (Martinc et al., 2020). (ii) The corpora were
lemmatized, while token-based models usually take the raw sentence as input. In order to make the input
more suitable for token-based models, we also provide the raw corpora after the evaluation phase and will
publish the annotated uses of the target words with additional context.17

The influence of frequency In prior work, the predictions of many systems have been shown to be
inherently biased towards word frequency, either as a consequence of an increasing sampling error
with lower frequency (Dubossarsky et al., 2017) or by directly relying on frequency-related variables
(Schlechtweg et al., 2017; Schlechtweg et al., 2019). We have controlled for frequency when selecting
target words (recall Table 4) in order to test model performance when frequency is not an indicating
factor. Despite the controlled test sets we observe strong frequency biases for the individual models as
illustrated for Swedish in Figure 3.18 Models rather correlate negatively with the minimum frequency of
target words between corpora (FRQm), and positively with the change in their frequency across corpora
(FRQd). This means that models predict higher change for low-frequency words and higher change for
words with strong changes in frequency. Despite their superior performance, type embeddings are more

17https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd
18Find the full set of analysis plots at https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd-post.
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publish the annotated uses of the target words with additional context.17

The influence of frequency In prior work, the predictions of many systems have been shown to be
inherently biased towards word frequency, either as a consequence of an increasing sampling error
with lower frequency (Dubossarsky et al., 2017) or by directly relying on frequency-related variables
(Schlechtweg et al., 2017; Schlechtweg et al., 2019). We have controlled for frequency when selecting
target words (recall Table 4) in order to test model performance when frequency is not an indicating
factor. Despite the controlled test sets we observe strong frequency biases for the individual models as
illustrated for Swedish in Figure 3.18 Models rather correlate negatively with the minimum frequency of
target words between corpora (FRQm), and positively with the change in their frequency across corpora
(FRQd). This means that models predict higher change for low-frequency words and higher change for
words with strong changes in frequency. Despite their superior performance, type embeddings are more

17https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd
18Find the full set of analysis plots at https://www.ims.uni-stuttgart.de/data/sem-eval-ulscd-post.


