
Day 7 - Contextual Embeddings, Pretrained Models, and
Transfer Learning

Advanced Text as Data: Natural Language Processing

Essex Summer School in Social Science Data Analysis

Burt L. Monroe (Instructor) & Sam Bestvater (TA)

Pennsylvania State University

August 4, 2021

Transfer Learning A typical use case

Source: Becker, et al. 2020, Modern Approaches to Natural Language Processing

Transfer Learning

Source: Becker, et al. 2020, Modern Approaches to Natural Language Processing

Feature Extraction / Contextualized Word Embeddings

CoVe (SalesForce, 2017)

Pretrained on machine
translation.
Keep the encoder and reuse
for other task.

(ELMo, AllenNLP 2018)

Language Model: Predict the next word

ELMo combines a forward and backward language model

Fine-Tuning (ULMFiT - Howard & Ruder 2018)

Source: Becker, et al. 2020, Modern Approaches to Natural Language Processing

Fine-Tuning (ULMFiT - Howard & Ruder 2018)

Source: Becker, et al. 2020, Modern Approaches to Natural Language Processing

Techniques like “gradual
unfreezing” help to
prevent “catastrophic
forgetting.”

Use a transformer! GPT (Open-AI / Radford, et al., 2018)

Transformer architecture
dramatically sped up
training, allowing for
deeper models (12 layers
in the original GPT),
and bigger training data
(Books Corpus in the

Image Source: Radford, et al. 2018
GPT used just the decoder, on an LM task.

BERT (Google, 2018)

%(57��2XUV�

7UP 7UP 7UP

7UP 7UP 7UP

���

���

7UP 7UP 7UP

7UP 7UP 7UP

���

���

2SHQ$,�*37

/VWP

(/0R

/VWP /VWP

/VWP /VWP /VWP

/VWP /VWP /VWP

/VWP /VWP /VWP

�7� 7� �71���

���

���

���

���

�(� (� �(1���

�7� 7� 71���

�(� (� �(1���

�7� 7� �71���

�(� (� �(1���

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

to converge. In Section C.1 we demonstrate that
MLM does converge marginally slower than a left-
to-right model (which predicts every token), but
the empirical improvements of the MLM model
far outweigh the increased training cost.

Next Sentence Prediction The next sentence
prediction task can be illustrated in the following
examples.

Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

A.2 Pre-training Procedure

To generate each training input sequence, we sam-
ple two spans of text from the corpus, which we
refer to as “sentences” even though they are typ-
ically much longer than single sentences (but can
be shorter also). The first sentence receives the A
embedding and the second receives the B embed-
ding. 50% of the time B is the actual next sentence
that follows A and 50% of the time it is a random
sentence, which is done for the “next sentence pre-
diction” task. They are sampled such that the com-
bined length is  512 tokens. The LM masking is
applied after WordPiece tokenization with a uni-
form masking rate of 15%, and no special consid-
eration given to partial word pieces.

We train with batch size of 256 sequences (256
sequences * 512 tokens = 128,000 tokens/batch)
for 1,000,000 steps, which is approximately 40

epochs over the 3.3 billion word corpus. We
use Adam with learning rate of 1e-4, �1 = 0.9,
�2 = 0.999, L2 weight decay of 0.01, learning
rate warmup over the first 10,000 steps, and linear
decay of the learning rate. We use a dropout prob-
ability of 0.1 on all layers. We use a gelu acti-
vation (Hendrycks and Gimpel, 2016) rather than
the standard relu, following OpenAI GPT. The
training loss is the sum of the mean masked LM
likelihood and the mean next sentence prediction
likelihood.

Training of BERTBASE was performed on 4
Cloud TPUs in Pod configuration (16 TPU chips
total).13 Training of BERTLARGE was performed
on 16 Cloud TPUs (64 TPU chips total). Each pre-
training took 4 days to complete.

Longer sequences are disproportionately expen-
sive because attention is quadratic to the sequence
length. To speed up pretraing in our experiments,
we pre-train the model with sequence length of
128 for 90% of the steps. Then, we train the rest
10% of the steps of sequence of 512 to learn the
positional embeddings.

A.3 Fine-tuning Procedure

For fine-tuning, most model hyperparameters are
the same as in pre-training, with the exception of
the batch size, learning rate, and number of train-
ing epochs. The dropout probability was always
kept at 0.1. The optimal hyperparameter values
are task-specific, but we found the following range
of possible values to work well across all tasks:

• Batch size: 16, 32
13https://cloudplatform.googleblog.com/2018/06/Cloud-

TPU-now-offers-preemptible-pricing-and-global-
availability.html

BERT input representation

BERT - so what?

• BERT is a pretrained language model that can be fine-
tuned to a specific task.

Source: Alammar (2018)

Pretraining #1: Masked Language Modeling

Pretraining #2: Next Sentence Prediction

%(57 %(57

(>&/6@ (� �(>6(3@��� (1 (�¶ ��� (0¶

& 7� 7>6(3@��� 71 7�¶ ��� 70¶

>&/6@ 7RN�� �>6(3@��� 7RN�1 7RN�� ��� 7RN0

4XHVWLRQ 3DUDJUDSK

6WDUW�(QG�6SDQ

%(57

(>&/6@ (� �(>6(3@��� (1 (�¶ ��� (0¶

& 7� 7>6(3@��� 71 7�¶ ��� 70¶

>&/6@ 7RN�� �>6(3@��� 7RN�1 7RN�� ��� 7RN0

0DVNHG�6HQWHQFH�$ 0DVNHG�6HQWHQFH�%

3UH�WUDLQLQJ)LQH�7XQLQJ

163 0DVN�/0 0DVN�/0

8QODEHOHG�6HQWHQFH�$�DQG�%�3DLU�

64X$'

4XHVWLRQ�$QVZHU�3DLU

1(501/,

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

Highlights in pretrained models

• 2018 - ELMo (AllenNLP) - Contextualized word embeddings

• 2018 - ULMFit (fast.ai) - Fine-tuning a pretrained model

• 2018 - GPT - Use a transformer (decoder) - autoregressive

• 2018 - BERT (Google) - Bidirectional transformer encoder / auto-encoder, MLM/NSP

• Feb 2019 - GPT-2 (OpenAI) - 1.5 billion parameters

• Apr 2019 - ERNIE (Baidu) - masked phrases/entities in pretraining

• Jun 2019 - XLNet (CMU/Google) - permuted language modeling

• Jul 2019 - RoBERTa (Facebook) - pretraining differences, more training, more data

• Sep 2019 - ALBERT (Google) - Parameter-reduction techniques

Highlights in pretrained models
• Aug 2019 - StructBERT (Alibaba) - BERT masked LM + unshuffling scrambled word and sentence order.

• Sep 2019 - MegatronLM (Nvidia) - parallelism in pretraining, 8.3b parameter ~GPT-2, 3.9b ~BERT

• Oct 2019 - T5 (Google) - unifying text-to-text framework

• Jan 2020 - Reformer (Google) - locality-sensitive hashing allows context windows of 1m words

• Feb 2020 - Meena (Google) - 2.6B parameter chatbot

• Feb 2020 - Turing NLG (Microsoft) - 17 billion parameters

• May 2020 - GPT-3 (OpenAI) - 175 billion parameters

• May 2020 - ELECTRA (Stanford) - Efficiency from different pretraining

• Jul 2020 - DeBERTa (Microsoft) - “disentangled attention”

• May 2021 - OmniNET (Google) - “omnidirectional attention”

ERNIE (Baidu, 2019)

Training objective. BERT Masked LM + masked phrases and entities

����

� �
��
�����

�����

������ �� ������ ��
��	

��
�� ����� ��
��	 �� �� ��
��	 �������

� ���	������

�
��� ������ ��

��
�� ����� ��
��	 �� ��
��	��
��	��
��	��
��	��
��	��
��	

�
������
 �����������

�
 ������� ���
���

��
��	

�������

Figure 1: The different masking strategy between BERT and ERNIE

3 Methods

We introduce ERNIE and its detailed implementa-
tion in this section. We first describe the model’s
transformer encoder,and then introduce the knowl-
edge integration method in Section 3.2. The com-
parisons between BERT and ERNIE are shown vi-
sually in Figure 1.

3.1 Transformer Encoder

ERNIE use multi-layer Transformer (Vaswani
et al., 2017) as basic encoder like previous pre-
traning model such as GPT, BERT and XLM.
The Transformer can capture the contextual in-
formation for each token in the sentence via self-
attention, and generates a sequence of contextual
embeddings.

For Chinese corpus, we add spaces around ev-
ery character in the CJK Unicode range and use
the WordPiece (Wu et al., 2016) to tokenize Chi-
nese sentences. For a given token, its input rep-
resentation is constructed by summing the cor-
responding token, segment and position embed-
dings. The first token of every sequence is the spe-
cial classification embedding([CLS]).

3.2 Knowledge Integration

we use prior knowledge to enhance our pretrained
language model. Instead of adding the knowledge
embedding directly, we proposed a multi-stage
knowledge masking strategy to integrate phrase
and entity level knowledge into the Language rep-
resentation. The different masking level of a sen-
tence is described in Figure 2.

3.2.1 Basic-Level Masking

The first learning stage is to use basic level mask-
ing, It treat a sentence as a sequence of basic
Language unit, for English, the basic language
unit is word, and for Chinese, the basic language
unit is Chinese Character. In the training process,
We randomly mask 15 percents of basic language
units, and using other basic units in the sentence as
inputs, and train a transformer to predict the mask
units. Based on basic level mask, we can obtain a
basic word representation. Because it is trained on
a random mask of basic semantic units, high level
semantic knowledge is hard to be fully modeled.

3.2.2 Phrase-Level Masking

The second stage is to employ phrase-level mask-
ing. Phrase is a small group of words or characters
together acting as a conceptual unit. For English,
we use lexical analysis and chunking tools to get
the boundary of phrases in the sentences, and use
some language dependent segmentation tools to
get the word/phrase information in other language
such as Chinese. In phrase-level mask stage, we
also use basic language units as training input, un-
like random basic units mask, this time we ran-
domly select a few phrases in the sentence, mask
and predict all the basic units in the same phrase.
At this stage, phrase information is encoded into
the word embedding.

3.2.3 Entity-Level Masking

The third stage is entity-level masking. Name
entities contain persons, locations, organizations,
products, etc., which can be denoted with a proper

StructBERT (Alibaba, 2019)

Training objective. BERT Masked LM + unshuffling scrambled words and sentences.

����

� �
��
�����

�����

������ �� ������ ��
��	

��
�� ����� ��
��	 �� �� ��
��	 �������

� ���	������

�
��� ������ ��

��
�� ����� ��
��	 �� ��
��	��
��	��
��	��
��	��
��	��
��	

�
������
 �����������

�
 ������� ���
���

��
��	

�������

Figure 1: The different masking strategy between BERT and ERNIE

3 Methods

We introduce ERNIE and its detailed implementa-
tion in this section. We first describe the model’s
transformer encoder,and then introduce the knowl-
edge integration method in Section 3.2. The com-
parisons between BERT and ERNIE are shown vi-
sually in Figure 1.

3.1 Transformer Encoder

ERNIE use multi-layer Transformer (Vaswani
et al., 2017) as basic encoder like previous pre-
traning model such as GPT, BERT and XLM.
The Transformer can capture the contextual in-
formation for each token in the sentence via self-
attention, and generates a sequence of contextual
embeddings.

For Chinese corpus, we add spaces around ev-
ery character in the CJK Unicode range and use
the WordPiece (Wu et al., 2016) to tokenize Chi-
nese sentences. For a given token, its input rep-
resentation is constructed by summing the cor-
responding token, segment and position embed-
dings. The first token of every sequence is the spe-
cial classification embedding([CLS]).

3.2 Knowledge Integration

we use prior knowledge to enhance our pretrained
language model. Instead of adding the knowledge
embedding directly, we proposed a multi-stage
knowledge masking strategy to integrate phrase
and entity level knowledge into the Language rep-
resentation. The different masking level of a sen-
tence is described in Figure 2.

3.2.1 Basic-Level Masking

The first learning stage is to use basic level mask-
ing, It treat a sentence as a sequence of basic
Language unit, for English, the basic language
unit is word, and for Chinese, the basic language
unit is Chinese Character. In the training process,
We randomly mask 15 percents of basic language
units, and using other basic units in the sentence as
inputs, and train a transformer to predict the mask
units. Based on basic level mask, we can obtain a
basic word representation. Because it is trained on
a random mask of basic semantic units, high level
semantic knowledge is hard to be fully modeled.

3.2.2 Phrase-Level Masking

The second stage is to employ phrase-level mask-
ing. Phrase is a small group of words or characters
together acting as a conceptual unit. For English,
we use lexical analysis and chunking tools to get
the boundary of phrases in the sentences, and use
some language dependent segmentation tools to
get the word/phrase information in other language
such as Chinese. In phrase-level mask stage, we
also use basic language units as training input, un-
like random basic units mask, this time we ran-
domly select a few phrases in the sentence, mask
and predict all the basic units in the same phrase.
At this stage, phrase information is encoded into
the word embedding.

3.2.3 Entity-Level Masking

The third stage is entity-level masking. Name
entities contain persons, locations, organizations,
products, etc., which can be denoted with a proper

T5 (Google, 2019)

Unifying tasks as all text-to-text

Trained on C4, new “Collossal Clean Crawled Corpus.” - 11b param

GPT-3 (Google, 2019)

Zero-, one-, and few-shot learning - 175 billion parameters

Autoregressive

ALBERT (Google, 2019)

XLNet (CMU/Google 2019)

Pretraining: Permuted Language Modeling

RoBERTa (Facebook, 2019)

RoBERTa (Facebook, 2019)

DeBERTa (Microsoft 2020)

Disentangled Attention

ELECTRA (Stanford, 2020)

Training objective. Replaced token detection.

Outperforms BERT w/ similar parameters,
matches RoBERTa and XLNet w/ 25% compute.

Arms Race GPT-3 - 175000!

Overview / Taxonomy

QIU XP, et al. Pre-trained Models for Natural Language Processing: A Survey March (2020) 9

PTMs

Contextual?
Non-Contextual CBOW/Skip-Gram [11],GloVe [12]

Contextual ELMo [14], GPT [15], BERT [16]

Architectures

LSTM LM-LSTM [35], Shared LSTM[5], ELMo [14], CoVe [13]

Transformer Enc. BERT [16], SpanBERT [47], XLNet [49], RoBERTa [43]

Transformer Dec. GPT [15], GPT-2 [58],GPT-3 [59]

Transformer MASS [41], BART [50],T5 [42], XNLG [60], mBART [61]

Pre-Training
Tasks

Supervised MT CoVe [13]

Unsupervised/
Self-Supervised

LM ELMo [14], GPT [15], GPT-2 [58], UniLM [44]

MLM

BERT [16], SpanBERT [47], RoBERTa [43], XLM-R [62]

TLM XLM [46]

Seq2Seq MLM MASS [41], T5 [42]

PLM XLNet [49]

DAE BART [50]

CTL

RTD CBOW-NS [11], ELECTRA [56]

NSP BERT [16], UniLM [44]

SOP ALBERT [63], StructBERT [48]

Tuning
Strategies

Fine-Tuning Two-stage FT [64–66],Multi-task FT [67], Extra Adaptor [68, 69]

Prompt-Tuning
Discrete PET [70],AutoPrompt [71],LM-BFF [72]

Continuous WARP [73],Prefix-Tuning [74],P-Tuning [75]

Extensions

Knowledge-Enriched
ERNIE(THU) [76], KnowBERT [77], K-BERT [78], SentiLR [79], KEPLER [80]
WKLM [57], CoLAKE [81]

Multilingual
XLU mBERT [16], Unicoder [82], XLM [46], XLM-R [62], MultiFit [83]

XLG MASS [41], mBART [61], XNLG [60]

Language-Specific
ERNIE(Baidu) [84], BERT-wwm-Chinese [85], NEZHA [86], ZEN [87], BERTje [88]
CamemBERT [89], FlauBERT [90], RobBERT [91]

Multi-Modal

Image ViLBERT [92], LXMERT [93], VisualBERT [94], B2T2 [95],VL-BERT [96]

Video VideoBERT [97], CBT [98]

Speech SpeechBERT [99]

Domain-Specific SentiLR [79], BioBERT [100], SciBERT [101], PatentBERT [102]

Model Compression

Model Pruning CompressingBERT [103]

Quantization Q-BERT [104], Q8BERT [105]

Parameter Sharing ALBERT [63]

Distillation DistilBERT [106], TinyBERT [107], MiniLM [108]

Module Replacing BERT-of-Theseus [109]

Early Exit
DeeBERT [110], RightTool [111], FastBERT [112], PABEE [113], Liao et al. [114], Sun et al. [115]
SentEE/TokEE [116]

Figure 3: Taxonomy of PTMs with Representative Examples

. Invited Review .

Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu*, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai & Xuanjing Huang

School of Computer Science, Fudan University, Shanghai 200433, China;
Shanghai Key Laboratory of Intelligent Information Processing, Shanghai 200433, China

Recently, the emergence of pre-trained models (PTMs)* has brought natural language processing (NLP) to a new era. In this
survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its
research progress. Then we systematically categorize existing PTMs based on a taxonomy from four di↵erent perspectives. Next,
we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for
future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP
tasks.

Deep Learning, Neural Network, Natural Language Processing, Pre-trained Model, Distributed Representation, Word
Embedding, Self-Supervised Learning, Language Modelling

1 Introduction

With the development of deep learning, various neural net-
works have been widely used to solve Natural Language Pro-
cessing (NLP) tasks, such as convolutional neural networks
(CNNs) [1–3], recurrent neural networks (RNNs) [4, 5], graph-
based neural networks (GNNs) [6–8] and attention mecha-
nisms [9, 10]. One of the advantages of these neural models
is their ability to alleviate the feature engineering problem.
Non-neural NLP methods usually heavily rely on the discrete
handcrafted features, while neural methods usually use low-
dimensional and dense vectors (aka. distributed representa-
tion) to implicitly represent the syntactic or semantic features
of the language. These representations are learned in specific
NLP tasks. Therefore, neural methods make it easy for people
to develop various NLP systems.

Despite the success of neural models for NLP tasks, the
performance improvement may be less significant compared

to the Computer Vision (CV) field. The main reason is that
current datasets for most supervised NLP tasks are rather small
(except machine translation). Deep neural networks usually
have a large number of parameters, which make them overfit
on these small training data and do not generalize well in
practice. Therefore, the early neural models for many NLP
tasks were relatively shallow and usually consisted of only
1⇠3 neural layers.

Recently, substantial work has shown that pre-trained mod-
els (PTMs), on the large corpus can learn universal language
representations, which are beneficial for downstream NLP
tasks and can avoid training a new model from scratch. With
the development of computational power, the emergence of
the deep models (i.e., Transformer [10]), and the constant
enhancement of training skills, the architecture of PTMs has
been advanced from shallow to deep. The first-generation
PTMs aim to learn good word embeddings. Since these mod-
els themselves are no longer needed by downstream tasks, they

* Corresponding author (email: xpqiu@fudan.edu.cn)
*PTMs are also known as pre-trained language models (PLMs). In this survey, we use PTMs for NLP instead of PLMs to avoid confusion with the narrow
concept of probabilistic (or statistical) language models.

ar
X

iv
:2

00
3.

08
27

1v
4

 [c
s.C

L]
 2

3
Ju

n
20

21

%(57��2XUV�

7UP 7UP 7UP

7UP 7UP 7UP

���

���

7UP 7UP 7UP

7UP 7UP 7UP

���

���

2SHQ$,�*37

/VWP

(/0R

/VWP /VWP

/VWP /VWP /VWP

/VWP /VWP /VWP

/VWP /VWP /VWP

�7� 7� �71���

���

���

���

���

�(� (� �(1���

�7� 7� 71���

�(� (� �(1���

�7� 7� �71���

�(� (� �(1���

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

to converge. In Section C.1 we demonstrate that
MLM does converge marginally slower than a left-
to-right model (which predicts every token), but
the empirical improvements of the MLM model
far outweigh the increased training cost.

Next Sentence Prediction The next sentence
prediction task can be illustrated in the following
examples.

Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

A.2 Pre-training Procedure

To generate each training input sequence, we sam-
ple two spans of text from the corpus, which we
refer to as “sentences” even though they are typ-
ically much longer than single sentences (but can
be shorter also). The first sentence receives the A
embedding and the second receives the B embed-
ding. 50% of the time B is the actual next sentence
that follows A and 50% of the time it is a random
sentence, which is done for the “next sentence pre-
diction” task. They are sampled such that the com-
bined length is  512 tokens. The LM masking is
applied after WordPiece tokenization with a uni-
form masking rate of 15%, and no special consid-
eration given to partial word pieces.

We train with batch size of 256 sequences (256
sequences * 512 tokens = 128,000 tokens/batch)
for 1,000,000 steps, which is approximately 40

epochs over the 3.3 billion word corpus. We
use Adam with learning rate of 1e-4, �1 = 0.9,
�2 = 0.999, L2 weight decay of 0.01, learning
rate warmup over the first 10,000 steps, and linear
decay of the learning rate. We use a dropout prob-
ability of 0.1 on all layers. We use a gelu acti-
vation (Hendrycks and Gimpel, 2016) rather than
the standard relu, following OpenAI GPT. The
training loss is the sum of the mean masked LM
likelihood and the mean next sentence prediction
likelihood.

Training of BERTBASE was performed on 4
Cloud TPUs in Pod configuration (16 TPU chips
total).13 Training of BERTLARGE was performed
on 16 Cloud TPUs (64 TPU chips total). Each pre-
training took 4 days to complete.

Longer sequences are disproportionately expen-
sive because attention is quadratic to the sequence
length. To speed up pretraing in our experiments,
we pre-train the model with sequence length of
128 for 90% of the steps. Then, we train the rest
10% of the steps of sequence of 512 to learn the
positional embeddings.

A.3 Fine-tuning Procedure

For fine-tuning, most model hyperparameters are
the same as in pre-training, with the exception of
the batch size, learning rate, and number of train-
ing epochs. The dropout probability was always
kept at 0.1. The optimal hyperparameter values
are task-specific, but we found the following range
of possible values to work well across all tasks:

• Batch size: 16, 32
13https://cloudplatform.googleblog.com/2018/06/Cloud-

TPU-now-offers-preemptible-pricing-and-global-
availability.html

Pretraining Model Architectures

QIU XP, et al. Pre-trained Models for Natural Language Processing: A Survey March (2020) 9

PTMs

Contextual?
Non-Contextual CBOW/Skip-Gram [11],GloVe [12]

Contextual ELMo [14], GPT [15], BERT [16]

Architectures

LSTM LM-LSTM [35], Shared LSTM[5], ELMo [14], CoVe [13]

Transformer Enc. BERT [16], SpanBERT [47], XLNet [49], RoBERTa [43]

Transformer Dec. GPT [15], GPT-2 [58],GPT-3 [59]

Transformer MASS [41], BART [50],T5 [42], XNLG [60], mBART [61]

Pre-Training
Tasks

Supervised MT CoVe [13]

Unsupervised/
Self-Supervised

LM ELMo [14], GPT [15], GPT-2 [58], UniLM [44]

MLM

BERT [16], SpanBERT [47], RoBERTa [43], XLM-R [62]

TLM XLM [46]

Seq2Seq MLM MASS [41], T5 [42]

PLM XLNet [49]

DAE BART [50]

CTL

RTD CBOW-NS [11], ELECTRA [56]

NSP BERT [16], UniLM [44]

SOP ALBERT [63], StructBERT [48]

Tuning
Strategies

Fine-Tuning Two-stage FT [64–66],Multi-task FT [67], Extra Adaptor [68, 69]

Prompt-Tuning
Discrete PET [70],AutoPrompt [71],LM-BFF [72]

Continuous WARP [73],Prefix-Tuning [74],P-Tuning [75]

Extensions

Knowledge-Enriched
ERNIE(THU) [76], KnowBERT [77], K-BERT [78], SentiLR [79], KEPLER [80]
WKLM [57], CoLAKE [81]

Multilingual
XLU mBERT [16], Unicoder [82], XLM [46], XLM-R [62], MultiFit [83]

XLG MASS [41], mBART [61], XNLG [60]

Language-Specific
ERNIE(Baidu) [84], BERT-wwm-Chinese [85], NEZHA [86], ZEN [87], BERTje [88]
CamemBERT [89], FlauBERT [90], RobBERT [91]

Multi-Modal

Image ViLBERT [92], LXMERT [93], VisualBERT [94], B2T2 [95],VL-BERT [96]

Video VideoBERT [97], CBT [98]

Speech SpeechBERT [99]

Domain-Specific SentiLR [79], BioBERT [100], SciBERT [101], PatentBERT [102]

Model Compression

Model Pruning CompressingBERT [103]

Quantization Q-BERT [104], Q8BERT [105]

Parameter Sharing ALBERT [63]

Distillation DistilBERT [106], TinyBERT [107], MiniLM [108]

Module Replacing BERT-of-Theseus [109]

Early Exit
DeeBERT [110], RightTool [111], FastBERT [112], PABEE [113], Liao et al. [114], Sun et al. [115]
SentEE/TokEE [116]

Figure 3: Taxonomy of PTMs with Representative Examples

MT: Machine Translation

LM: Language Modeling

MLM: Masked Language Modeling

PLM: Permuted Language Modeling

DAE: Denoising Autoencoder

CTL: Contrastive Learning
 RTD: Replaced Token Detection
 NSP: Next Sentence Prediction
 SOP: Sentence Order Prediction

Pretraining Tasks

. Invited Review .

Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu*, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai & Xuanjing Huang

School of Computer Science, Fudan University, Shanghai 200433, China;
Shanghai Key Laboratory of Intelligent Information Processing, Shanghai 200433, China

Recently, the emergence of pre-trained models (PTMs)* has brought natural language processing (NLP) to a new era. In this
survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its
research progress. Then we systematically categorize existing PTMs based on a taxonomy from four di↵erent perspectives. Next,
we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for
future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP
tasks.

Deep Learning, Neural Network, Natural Language Processing, Pre-trained Model, Distributed Representation, Word
Embedding, Self-Supervised Learning, Language Modelling

1 Introduction

With the development of deep learning, various neural net-
works have been widely used to solve Natural Language Pro-
cessing (NLP) tasks, such as convolutional neural networks
(CNNs) [1–3], recurrent neural networks (RNNs) [4, 5], graph-
based neural networks (GNNs) [6–8] and attention mecha-
nisms [9, 10]. One of the advantages of these neural models
is their ability to alleviate the feature engineering problem.
Non-neural NLP methods usually heavily rely on the discrete
handcrafted features, while neural methods usually use low-
dimensional and dense vectors (aka. distributed representa-
tion) to implicitly represent the syntactic or semantic features
of the language. These representations are learned in specific
NLP tasks. Therefore, neural methods make it easy for people
to develop various NLP systems.

Despite the success of neural models for NLP tasks, the
performance improvement may be less significant compared

to the Computer Vision (CV) field. The main reason is that
current datasets for most supervised NLP tasks are rather small
(except machine translation). Deep neural networks usually
have a large number of parameters, which make them overfit
on these small training data and do not generalize well in
practice. Therefore, the early neural models for many NLP
tasks were relatively shallow and usually consisted of only
1⇠3 neural layers.

Recently, substantial work has shown that pre-trained mod-
els (PTMs), on the large corpus can learn universal language
representations, which are beneficial for downstream NLP
tasks and can avoid training a new model from scratch. With
the development of computational power, the emergence of
the deep models (i.e., Transformer [10]), and the constant
enhancement of training skills, the architecture of PTMs has
been advanced from shallow to deep. The first-generation
PTMs aim to learn good word embeddings. Since these mod-
els themselves are no longer needed by downstream tasks, they

* Corresponding author (email: xpqiu@fudan.edu.cn)
*PTMs are also known as pre-trained language models (PLMs). In this survey, we use PTMs for NLP instead of PLMs to avoid confusion with the narrow
concept of probabilistic (or statistical) language models.

ar
X

iv
:2

00
3.

08
27

1v
4

 [c
s.C

L]
 2

3
Ju

n
20

21

QIU XP, et al. Pre-trained Models for Natural Language Processing: A Survey March (2020) 9

PTMs

Contextual?
Non-Contextual CBOW/Skip-Gram [11],GloVe [12]

Contextual ELMo [14], GPT [15], BERT [16]

Architectures

LSTM LM-LSTM [35], Shared LSTM[5], ELMo [14], CoVe [13]

Transformer Enc. BERT [16], SpanBERT [47], XLNet [49], RoBERTa [43]

Transformer Dec. GPT [15], GPT-2 [58],GPT-3 [59]

Transformer MASS [41], BART [50],T5 [42], XNLG [60], mBART [61]

Pre-Training
Tasks

Supervised MT CoVe [13]

Unsupervised/
Self-Supervised

LM ELMo [14], GPT [15], GPT-2 [58], UniLM [44]

MLM

BERT [16], SpanBERT [47], RoBERTa [43], XLM-R [62]

TLM XLM [46]

Seq2Seq MLM MASS [41], T5 [42]

PLM XLNet [49]

DAE BART [50]

CTL

RTD CBOW-NS [11], ELECTRA [56]

NSP BERT [16], UniLM [44]

SOP ALBERT [63], StructBERT [48]

Tuning
Strategies

Fine-Tuning Two-stage FT [64–66],Multi-task FT [67], Extra Adaptor [68, 69]

Prompt-Tuning
Discrete PET [70],AutoPrompt [71],LM-BFF [72]

Continuous WARP [73],Prefix-Tuning [74],P-Tuning [75]

Extensions

Knowledge-Enriched
ERNIE(THU) [76], KnowBERT [77], K-BERT [78], SentiLR [79], KEPLER [80]
WKLM [57], CoLAKE [81]

Multilingual
XLU mBERT [16], Unicoder [82], XLM [46], XLM-R [62], MultiFit [83]

XLG MASS [41], mBART [61], XNLG [60]

Language-Specific
ERNIE(Baidu) [84], BERT-wwm-Chinese [85], NEZHA [86], ZEN [87], BERTje [88]
CamemBERT [89], FlauBERT [90], RobBERT [91]

Multi-Modal

Image ViLBERT [92], LXMERT [93], VisualBERT [94], B2T2 [95],VL-BERT [96]

Video VideoBERT [97], CBT [98]

Speech SpeechBERT [99]

Domain-Specific SentiLR [79], BioBERT [100], SciBERT [101], PatentBERT [102]

Model Compression

Model Pruning CompressingBERT [103]

Quantization Q-BERT [104], Q8BERT [105]

Parameter Sharing ALBERT [63]

Distillation DistilBERT [106], TinyBERT [107], MiniLM [108]

Module Replacing BERT-of-Theseus [109]

Early Exit
DeeBERT [110], RightTool [111], FastBERT [112], PABEE [113], Liao et al. [114], Sun et al. [115]
SentEE/TokEE [116]

Figure 3: Taxonomy of PTMs with Representative Examples

. Invited Review .

Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu*, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai & Xuanjing Huang

School of Computer Science, Fudan University, Shanghai 200433, China;
Shanghai Key Laboratory of Intelligent Information Processing, Shanghai 200433, China

Recently, the emergence of pre-trained models (PTMs)* has brought natural language processing (NLP) to a new era. In this
survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its
research progress. Then we systematically categorize existing PTMs based on a taxonomy from four di↵erent perspectives. Next,
we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for
future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP
tasks.

Deep Learning, Neural Network, Natural Language Processing, Pre-trained Model, Distributed Representation, Word
Embedding, Self-Supervised Learning, Language Modelling

1 Introduction

With the development of deep learning, various neural net-
works have been widely used to solve Natural Language Pro-
cessing (NLP) tasks, such as convolutional neural networks
(CNNs) [1–3], recurrent neural networks (RNNs) [4, 5], graph-
based neural networks (GNNs) [6–8] and attention mecha-
nisms [9, 10]. One of the advantages of these neural models
is their ability to alleviate the feature engineering problem.
Non-neural NLP methods usually heavily rely on the discrete
handcrafted features, while neural methods usually use low-
dimensional and dense vectors (aka. distributed representa-
tion) to implicitly represent the syntactic or semantic features
of the language. These representations are learned in specific
NLP tasks. Therefore, neural methods make it easy for people
to develop various NLP systems.

Despite the success of neural models for NLP tasks, the
performance improvement may be less significant compared

to the Computer Vision (CV) field. The main reason is that
current datasets for most supervised NLP tasks are rather small
(except machine translation). Deep neural networks usually
have a large number of parameters, which make them overfit
on these small training data and do not generalize well in
practice. Therefore, the early neural models for many NLP
tasks were relatively shallow and usually consisted of only
1⇠3 neural layers.

Recently, substantial work has shown that pre-trained mod-
els (PTMs), on the large corpus can learn universal language
representations, which are beneficial for downstream NLP
tasks and can avoid training a new model from scratch. With
the development of computational power, the emergence of
the deep models (i.e., Transformer [10]), and the constant
enhancement of training skills, the architecture of PTMs has
been advanced from shallow to deep. The first-generation
PTMs aim to learn good word embeddings. Since these mod-
els themselves are no longer needed by downstream tasks, they

* Corresponding author (email: xpqiu@fudan.edu.cn)
*PTMs are also known as pre-trained language models (PLMs). In this survey, we use PTMs for NLP instead of PLMs to avoid confusion with the narrow
concept of probabilistic (or statistical) language models.

ar
X

iv
:2

00
3.

08
27

1v
4

 [c
s.C

L]
 2

3
Ju

n
20

21

Variants

Benchmarks / leaderboards

GLUE Benchmarks - 9 Language Understanding Tasks (NYU)

SQuAD benchmark

RACE Benchmark

Sam - Text Classification with BERT

