

Day 7 - Contextual Embeddings, Pretrained Models, and Transfer Learning

Advanced Text as Data: Natural Language Processing Essex Summer School in Social Science Data Analysis

Burt L. Monroe (Instructor) & Sam Bestvater (TA) Pennsylvania State University

August 4, 2021

Transfer Learning

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

A typical use case

2 - Supervised training on a specific task with a labeled dataset.

Transfer Learning

Source: Becker, et al. 2020, Modern Approaches to Natural Language Process

Feature Extraction / Contextualized Word Embeddings

Adopted model

question answering classification sequence labeling

. . . .

Source: Becker, et al. 2020, Modern Approaches to Natural Language Process

CoVe (SalesForce, 2017)

Pretrained on machine translation. Keep the encoder and reuse for other task.

(ELMo, AllenNLP 2018)

Language Model: Predict the next word

Embedding of "stick" in "Let's stick to" - Step #1

Forward Language Model

ELMo combines a forward and backward language model

Embedding of "stick" in "Let's stick to" - Step #2

ELMo embedding of "stick" for this task in this context

\rightarrow stick

Backward Language Model

*Kitaev and Klein, ACL 2018 (see also Joshi et al., ACL 2018)

Fine-Tuning (ULMFiT - Howard & Ruder 2018)

Adopted model

question answering classification sequence labeling

. . . .

Source: Becker, et al. 2020, Modern Approaches to Natural Language Process

Fine-Tuning (ULMFiT - Howard & Ruder 2018)

Techniques like "gradual unfreezing" help to prevent "catastrophic forgetting."

Source: Becker, et al. 2020, Modern Approaches to Natural Language Process

Use a transformer! GPT (Open-Al / Radford, et al., 2018)

Transformer architecture dramatically sped up training, allowing for deeper models (12 layers in the original GPT), and bigger training data (Books Corpus in the

GPT used just the decoder, on an LM task.

Image Source: Radford, et al. 2018

BERT (Google, 2018)

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

BERTLARGE

BERTLARGE

BERT input representation

BERT - so what?

• BERT is a pretrained language model that can be finetuned to a specific task.

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Source: Alammar (2018)

Pretraining #1: Masked Language Modeling

Use the output of the masked word's position to predict the masked word

Input

Pretraining #2: Next Sentence Prediction

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating questions/answers).

Fine-Tuning

(c) Question Answering Tasks: SQuAD v1.1

Question

Tok N

Tok 1

(CLS)

Tok M

Tok 1

...

Paragraph

(SEP)

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

What is the best contextualized embedding for "Help" in that context?

Highlights in pretrained models

- 2018 ELMo (AllenNLP) Contextualized word embeddings
- 2018 ULMFit (fast.ai) Fine-tuning a pretrained model
- 2018 GPT Use a transformer (decoder) autoregressive
- 2018 BERT (Google) Bidirectional transformer encoder / auto-encoder, MLM/NSP •
- Feb 2019 GPT-2 (OpenAl) 1.5 billion parameters •
- Apr 2019 ERNIE (Baidu) masked phrases/entities in pretraining
- Jun 2019 XLNet (CMU/Google) permuted language modeling •
- Jul 2019 RoBERTa (Facebook) pretraining differences, more training, more data
- Sep 2019 ALBERT (Google) Parameter-reduction techniques

Highlights in pretrained models

- Aug 2019 StructBERT (Alibaba) BERT masked LM + unshuffling scrambled word and sentence order.
- Sep 2019 MegatronLM (Nvidia) parallelism in pretraining, 8.3b parameter ~GPT-2, 3.9b ~BERT •
- Oct 2019 T5 (Google) unifying text-to-text framework •
- Jan 2020 Reformer (Google) locality-sensitive hashing allows context windows of 1m words •
- Feb 2020 Meena (Google) 2.6B parameter chatbot
- Feb 2020 Turing NLG (Microsoft) 17 billion parameters
- May 2020 GPT-3 (OpenAl) 175 billion parameters •
- May 2020 ELECTRA (Stanford) Efficiency from different pretraining
- Jul 2020 DeBERTa (Microsoft) "disentangled attention" •
- May 2021 OmniNET (Google) "omnidirectional attention"

ERNIE (Baidu, 2019)

Figure 1: The different masking strategy between BERT and ERNIE

Training objective. BERT Masked LM + masked phrases and entities

StructBERT (Alibaba, 2019)

(a) Word Structural Objective

Figure 1: Illustrations of the two new pre-training objectives

Training objective. BERT Masked LM + unshuffling scrambled words and sentences.

T5 (Google, 2019)

Unifying tasks as all text-to-text

"translate English to German: That is good."

"cola sentence: The course is jumping well."

"stsb sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field."

"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi.."

Trained on C4, new "Collossal Clean Crawled Corpus." - 11b param

GPT-3 (Google, 2019)

Zero-, one-, and few-shot learning - 175 billion parameters

ALBERT (Google, 2019)

What's the core idea of this paper?

- parameters.
- techniques:
 - embeddings by decomposing the large vocabulary-embedding matrix into two small matrices;
- address BERT's limitations with regard to inter-sentence coherence.

What's the key achievement?

- training compared to the original BERT-large model achieves only slightly worse performance.
- state-of-the-art language modes by getting:
 - 89.4% accuracy on the RACE benchmark;
 - 89.4 score on the GLUE benchmark; and
 - An F1 score of 92.2 on the SQuAD 2.0 benchmark.

• It is not reasonable to further improve language models by making them larger because of memory limitations of available hardware, longer training times, and unexpected degradation of model performance with the increased number of

• To address this problem, the researchers introduce the **ALBERT** architecture that incorporates two parameter-reduction

• **factorized embedding parameterization**, where the size of the hidden layers is separated from the size of vocabulary

• **cross-layer parameter sharing** to prevent the number of parameters from growing with the depth of the network.

• The performance of ALBERT is further improved by introducing the self-supervised loss for **sentence-order prediction** to

With the introduced parameter-reduction techniques, the ALBERT configuration with 18× fewer parameters and 1.7× faster

The much larger ALBERT configuration, which still has fewer parameters than BERT-large, outperforms all of the current

XLNet (CMU/Google 2019)

Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$

Figure 1: Illustration of the permutation language modeling objective for predicting x_3 given the same input sequence x but with different factorization orders.

Pretraining: Permuted Language Modeling

Factorization order: $4 \rightarrow 3 \rightarrow 1 \rightarrow 2$

RoBERTa (Facebook, 2019)

What's the core idea of this paper?

- training, called RoBERTa:
 - More data: 160GB of text instead of the 16GB dataset originally used to train BERT.
 - Longer training: increasing the number of iterations from 100K to 300K and then further to 500K.
 - Larger batches: 8K instead of 256 in the original BERT base model.
 - Larger byte-level BPE vocabulary with 50K subword units instead of character-level BPE vocabulary of size 30K.
 - Removing the next sequence prediction objective from the training procedure.
 - Dynamically changing the masking pattern applied to the training data.

What's the key achievement?

- four out of nine individual tasks.

• The Facebook AI research team found that BERT was significantly undertrained and suggested an improved recipe for its

• RoBERTa outperforms BERT in all individual tasks on the General Language Understanding Evaluation (GLUE) benchmark. • The new model matches the recently introduced XLNet model on the GLUE benchmark and sets a new state of the art in

RoBERTa (Facebook, 2019)

	BERT	RoBERTa	DistilBERT	XLNet
Size (millions)	Base: 110 Large: 340	Base: 110 Large: 340	Base: 66	Base : ~110 Large : ~340
Training Time	Base: 8 x V100 x 12 days* Large: 64 TPU Chips x 4 days (or 280 x V100 x 1 days*)	Large: 1024 x V100 x 1 day; 4-5 times more than BERT.	Base : 8 x V100 x 3.5 days; 4 times less than BERT.	Large: 512 TPU Chips x 2.5 days; 5 times more than BERT.
Performance	Outperforms state-of- the-art in Oct 2018	2-20% improvement over BERT	3% degradation from BERT	2-15% improvement over BERT
Data	16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.	<mark>160 GB</mark> (16 GB BERT data + 144 GB additional)	16 GB BERT data. 3.3 Billion words.	Base : 16 GB BERT data Large : 113 GB (16 GB BERT data + 97 GB additional). 33 Billion words.
Method	BERT (Bidirectional Transformer with MLM and NSP)	BERT without NSP**	BERT Distillation	Bidirectional Transformer with Permutation based modeling

DeBERTa (Microsoft 2020)

Disentangled Attention

What's the key achievement?

- achieves:
 - an improvement of +0.9% in accuracy on MNLI (91.1% vs. 90.2%),
 - an improvement of +2.3% in accuracy on SQuAD v2.0 (90.7% vs. 88.4%),
 - an improvement of +3.6% in accuracy on RACE (86.8% vs. 83.2%)
- the human baseline by a decent margin (90.3 versus 89.8).

Figure 2: Comparison of the decoding layer.

• Compared to the current state-of-the-art method RoBERTa-Large, the DeBERTA model trained on half the training data

• A single scaled-up variant of DeBERTa surpasses the human baseline on the SuperGLUE benchmark for the first time (89.9 vs. 89.8). The ensemble DeBERTa is the top-performing method on SuperGLUE at the time of this publication, outperforming

ELECTRA (Stanford, 2020)

Outperforms BERT w/ similar parameters, matches RoBERTa and XLNet w/ 25% compute.

Training objective. Replaced token detection.

Arms Race

Overview / Taxonomy

Pretraining Model Architectures

LM-LSTM [35], Shared LSTM[5], ELMo [14], CoVe [13]

BERT [16], SpanBERT [47], XLNet [49], RoBERTa [43]

GPT [15], GPT-2 [58], GPT-3 [59]

MASS [41], BART [50], T5 [42], XNLG [60], mBART [61]

Pre-trained Models for Natural Language Processing: A Survey

Xipeng Qiu^{*}, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai & Xuanjing Huang

SOP: Sentence Order Prediction

Xipeng Qiu^{*}, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai & Xuanjing Huang

ViLBERT [92], LXMERT [93], VisualBERT [94], B2T2 [95], VL-BERT [96]

Pre-trained Models for Natural Language Processing: A Survey

Xipeng Qiu^{*}, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai & Xuanjing Huang

Benchmarks / leaderboards

GLUE Benchmarks - 9 Language Understanding Tasks (NYU)

Dataset	Description	Data example	Metric
CoLA	Is the sentence grammatical or ungrammatical?	"This building is than that one." = Ungrammatical	Matthews
SST-2	Is the movie review positive, negative, or neutral?	"The movie is funny , smart , visually inventive , and most of all , alive ." = .93056 (Very Positive)	Accuracy
MRPC	Is the sentence B a paraphrase of sentence A?	 A) "Yesterday , Taiwan reported 35 new infections , bringing the total number of cases to 418 ." B) "The island reported another 35 probable cases yesterday , taking its total to 418 ." = A Paraphrase 	Accuracy / F1
STS-B	How similar are sentences A and B?	 A) "Elephants are walking down a trail." B) "A herd of elephants are walking along a trail." = 4.6 (Very Similar) 	Pearson / Spearman
QQP	Are the two questions similar?	 A) "How can I increase the speed of my internet connection while using a VPN?" B) "How can Internet speed be increased by hacking through DNS?" = Not Similar 	Accuracy / F1
MNLI-mm	Does sentence A entail or contradict sentence B?	 A) "Tourist Information offices can be very helpful." B) "Tourist Information offices are never of any help." = Contradiction 	Accuracy
QNLI	Does sentence B contain the answer to the question in sentence A?	 A) "What is essential for the mating of the elements that create radio waves?" B) "Antennas are required by any radio receiver or transmitter to couple its electrical connection to the electromagnetic field." = Answerable 	Accuracy
RTE	Does sentence A entail sentence B?	 A) "In 2003, Yunus brought the microcredit revolution to the streets of Bangladesh to support more than 50,000 beggars, whom the Grameen Bank respectfully calls Struggling Members." B) "Yunus supported more than 50,000 Struggling Members." = Entailed 	Accuracy
WNLI	Sentence B replaces sentence A's ambiguous pronoun with one of the nouns - is this the correct noun?	 A) "Lily spoke to Donna, breaking her concentration." B) "Lily spoke to Donna, breaking Lily's concentration." = Incorrect Referent 	Accuracy

-

		•	GLUE Benchmark X	+												0
←	\rightarrow	C	gluebenchmark.com/leaderbo	bard						\$		0	•	* 🌒	Upc	late :
		Rank	Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQ	P MN	ILI-m I	/INLI-mm	QNLI	RT
		1	AliceMind & DIRL	StructBERT + CLEVER		91.0	75.3	97.7	93.9/91.9	93.5/93.1	75.6/90.	.8	91.7	91.5	97.4	92.
		2	ERNIE Team - Baidu	ERNIE		90.9	74.4	97.8	93.9/91.8	93.0/92.6	75.2/90.	.9	91.9	91.4	97.3	92.
		3	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.8	71.5	97.5	94.0/92.0	92.9/92.6	76.2/90.	.8	91.9	91.6	99.2	93.
		4	HFL IFLYTEK	MacALBERT + DKM		90.7	74.8	97.0	94.5/92.6	92.8/92.6	74.7/90.	.6	91.3	91.1	97.8	92.
•	+	5	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6	73.5	97.2	94.0/92.0	93.0/92.4	76.1/91.	.0	91.6	91.3	97.5	91.
		6	liangzhu ge	Deberta + adv (ensemble)		90.4	72.7	97.3	92.7/90.3	93.2/92.9	75.6/90.	.8	91.7	91.5	96.4	92.
		7	T5 Team - Google	Τ5		90.3	71.6	97.5	92.8/90.4	93.1/92.8	75.1/90.	.6	92.2	91.9	96.9	92.
		8	Microsoft D365 AI & MSR AI & GATECH	MT-DNN-SMART		89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.	.2	91.0	90.8	99.2	89.
•	+	9	Huawei Noah's Ark Lab	NEZHA-Large		89.8	71.7	97.3	93.3/91.0	92.4/91.9	75.2/90.	.7	91.5	91.3	96.2	90.
•	+	10	Zihang Dai	Funnel-Transformer (Ensemble B10-10-10H1024)		89.7	70.5	97.5	93.4/91.2	92.6/92.3	75.4/90.	.7	91.4	91.1	95.8	90.
•	+	11	ELECTRA Team	ELECTRA-Large + Standard Tricks		89.4	71.7	97.1	93.1/90.7	92.9/92.5	75.6/90.	.8	91.3	90.8	95.8	89.
•	+	12	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.4	68.0	96.8	93.1/90.8	92.3/92.1	74.8/90.	.3	91.1	90.7	95.6	88.
		13	Junjie Yang	HIRE-RoBERTa		88.3	68.6	97.1	93.0/90.7	92.4/92.0	74.3/90.	.2	90.7	90.4	95.5	87.
		14	Facebook Al	RoBERTa		88.1	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.	.2	90.8	90.2	95.4	88.
•	+	15	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.	.9	87.9	87.4	96.0	86.
		16	GLUE Human Baselines	GLUE Human Baselines		87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.	.4	92.0	92.8	91.2	93.
		17	Adrian de Wynter	Bort (Alexa Al)	nation	8.6	63.9	96.2	94.1/92.3	89.2/88.3	66.0/85.	.9	88.1	87.8	92.3	82.

Name	Ide
Broadcoverage Diagnostics	AX-
CommitmentBank	СВ
Choice of Plausible Alternatives	COI
Multi-Sentence Reading Comprehension	Mu
Recognizing Textual Entailment	RTE
Words in Context	WiC
The Winograd Schema Challenge	WS
BoolQ	Boo
Reading Comprehension with Commonsense Reasoning	ReC
Winogender Schema Diagnostics	AX-

perGLUE Benchmark	×	+										0
					☆		0	•	*		Jpdate	:
ode 📑 Tasks S	₽ Le	aderboard	i	FAQ 🟦	Diagnos	stics	1	Su	bmi	t 🎝 I	_ogin	

SuperGLUE Tasks

entifier	Download	More Info	Metric
í-b	*		Matthew's Corr
1			Avg. F1 / Accuracy
PA			Accuracy
ıltiRC	*		F1a / EM
E			Accuracy
С			Accuracy
SC			Accuracy
olQ			Accuracy
CoRD	*		F1 / Accuracy
ź-g	*		Gender Parity / Accuracy

DOWNLOAD ALL DATA

Leaderboard Version: 2.0

	R	ank	Name	Model	URL	Score	BoolQ	CB	СОРА	MultiRC	ReCoRD	RTE	WiC	WSC	AX-b	AX-g
		1	ERNIE Team - Baidu	ERNIE 3.0		90.6	91.0	98.6/99.2	97.4	88.6/63.2	94.7/94.2	92.6	77.4	97.3	68.6	92.7/94.7
-	+	2	Zirui Wang	T5 + Meena, Single Model (Meena Team - Google Brain)		90.4	91.4	95.8/97.6	98.0	88.3/63.0	94.2/93.5	93.0	77.9	96.6	69.1	92.7/91.9
-	ł	3	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3	90.4	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	66.7	93.3/93.8
		4	SuperGLUE Human Baselines	SuperGLUE Human Baselines		89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	76.6	99.3/99.7
	+	5	T5 Team - Google	Т5		89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	65.6	92.7/91.9
	ł	6	Huawei Noah's Ark Lab	NEZHA-Plus		86.7	87.8	94.4/96.0	93.6	84.6/55.1	90.1/89.6	89.1	74.6	93.2	58.0	87.1/74.4
	+	7	Alibaba PAI&ICBU	PAI Albert		86.1	88.1	92.4/96.4	91.8	84.6/54.7	89.0/88.3	88.8	74.1	93.2	75.6	98.3/99.2
	+	8	Infosys : DAWN : AI Research	RoBERTa-iCETS		86.0	88.5	93.2/95.2	91.2	86.4/58.2	89.9/89.3	89.9	72.9	89.0	61.8	88.8/81.5
-	ł	9	Tencent Jarvis Lab	RoBERTa (ensemble)		85.9	88.2	92.5/95.6	90.8	84.4/53.4	91.5/91.0	87.9	74.1	91.8	57.6	89.3/75.6
		10	Zhuiyi Technology	RoBERTa-mtl-adv		85.7	87.1	92.4/95.6	91.2	85.1/54.3	91.7/91.3	88.1	72.1	91.8	58.5	91.0/78.1
		11	Facebook Al	RoBERTa		84.6	87.1	90.5/95.2	90.6	84.4/52.5	90.6/90.0	88.2	69.9	89.0	57.9	91.0/78.1
	ł	12	Anuar Sharafudinov	AILabs Team, Transformers		82.6	88.1	91.6/94.8	86.8	85.1/54.7	82.8/79.8	88.9	74.1	78.8	100.0 1	00.0/100.0
		13	Rakesh Radhakrishnan Menon	ADAPET (ALBERT) - few-shot	omission	i to see m	nore infe	ormation	85.4	76.2/35.7	86.1/85.5	75.0	53.5	85.6	-0.4	100.0/50.0

SQuAD benchmark

What is SQuAD?

Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or *span*, from the corresponding reading passage, or the question might be unanswerable.

SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering.

Explore SQuAD2.0 and model predictions

SQuAD2.0 paper (Rajpurkar & Jia et al. '18)

SQuAD 1.1, the previous version of the SQuAD dataset,

0 🖈 🌒 🤇 Update 🚦 ☆ , 🍡 🕈 Explore 2.0 Explore 1.1 Home

The Stanford Question Answering Dataset

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph.

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Jun 04, 2021	IE-Net (ensemble) RICOH_SRCB_DML	90.939	93.214
2 Feb 21, 2021	FPNet (ensemble) Ant Service Intelligence Team	90.871	93.183
3 May 16, 2021	IE-NetV2 (ensemble) RICOH_SRCB_DML	90.860	93.100
4 Apr 06, 2020	SA-Net on Albert (ensemble) QIANXIN	90.724	93.011
5 May 05, 2020	SA-Net-V2 (ensemble) QIANXIN	90.679	92.948

RACE Benchmark

RACE Reading Comprehension Dataset

The RACE dataset is a large-scale **ReA**ding **C**omprehension dataset collected from English **E**xaminations that are created for middle school and high school students.

Report your results: If you have new results, please send Qizhe (qizhex@cs.cmu.edu) or Guokun (guokun@cs.cmu.edu) an email with the link to your paper!

Leaderboard

Model

Human Ceiling Perfor

Amazon Mechanical

ALBERT-SingleChoice + tra (ensemble)

Megatron-BERT (ense

ALBERT-SingleChoice + trai

ALBERT + DUMA (en

Megatron-BER

ALBERT (ensemb

UnifiedQA

ALBERT + DUM

T5^{*}

ALBERT

RoBERTa + MM

IperGLUE Benchmark	×	S RACE (Reading Comprehension X	+					0
			☆	0	•	*	Update	:

	Report Time	Institute	RACE	RACE- M	RACE- H
rmance	Apr 15, 2017	CMU	94.5	95.4	94.2
l Turker	Apr 15, 2017	CMU	73.3	85.1	69.4
ansfer learning	Nov 06, 2020	Tencent Cloud Xiaowei & Tencent Cloud TI- ONE	91.4	93.6	90.5
semble)	Mar 13, 2020	NVIDIA Research	90.9	93.1	90.0
ansfer learning	Nov 06, 2020	Tencent Cloud Xiaowei & Tencent Cloud TI- ONE	90.7	92.8	89.8
semble)	Mar 18, 2020	SJTU & Huawei Noah's Ark Lab	89.8	92.6	88.7
кт	Mar 13, 2020	NVIDIA Research	89.5	91.8	88.6
ble)	Sep 26, 2019	Google Research & TTIC	89.4	91.2	88.6
	May 02, 2020	AI2 & UW	89.4	-	-
ЛА	Feb 08, 2020	SJTU & Huawei Noah's Ark Lab	88.0	90.9	86.7
	May 02, 2020	Google	87.1	-	-
	Sep 26, 2019	Google Research & TTIC	86.5	89.0	85.5
1M	Oct 01, 2019	MIT & Amazon Alexa Al	85.0	89.1	83.3

Aug 30,

Sam - Text Classification with BERT