
Day 6 - From Recurrent Nets to Transformers 

Advanced Text as Data: Natural Language Processing

Essex Summer School in Social Science Data Analysis


Burt L. Monroe (Instructor) & Sam Bestvater (TA)

Pennsylvania State University


August 3, 2021



Today

• Convolutional Neural Nets (CNNs) - Convolution, filters/kernels, higher-level 
features 

• Recurrent Neural Nets (RNNs) - Recurrence / sequence, encoder-decoder 
seq2seq 

• Gating in recurrent networks (LSTMs / bi-LSTMs) 

• Attention mechanism in seq2seq models 

• Self-attention & positional encodings (transformer)



Today (unlikely)

• Convolutional Neural Nets (CNNs) - Convolution, filters/kernels, higher-level 
features 

• Recurrent Neural Nets (RNNs) - Recurrence / sequence, encoder-decoder 
seq2seq 

• Gating in recurrent networks (LSTMs / bi-LSTMs) 

• Attention mechanism in seq2seq models 

• Self-attention & positional encodings (transformer)



Convolution, Convolutional Neural Nets, and CNNs in NLP



Source: Wikipedia, “Convolution”

Convolution



Source: Wikipedia, “Kernel Density”

Kernel density — smooth histogram by convolving a Gaussian over observations



Source: Wikipedia, “Kernel Density”

Kernel density — how smooth depends on variance / “width” of the Gaussian



Source: Wikipedia, “Kernel Density”

Kernel density — smooth in two dimensions



Source: Fedor Kolomeyko, www.digital-geography.com

Kernel density — this is familiar in “heatmaps”

http://www.digital-geography.com


Source: Stanford Artificial Intelligence Laboratory, Introduction to Computer Vision, “Image Filtering”

Now imagine an image as two-dimensional data — a grid of pixel intensities 



Source: Stanford Artificial Intelligence Laboratory, Introduction to Computer Vision, “Image Filtering”

An image filter is a kernel - a small window we convolve over an image. 
The filter illustrated here averages the nine pixels in the window. 
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Figure 8: Effect of convolutional image kernels.

(Figure 5a), for each replacing the central pixel’s value with a sum of the nine pixel values in its window,

weighted as defined by the kernel. This particular kernel is similar to our Gaussian from before, smoothing

neighboring values toward each other and creating a “blur” effect as seen in Figure 8b.

Now consider the kernel in Figure 8c. This kernel brightens pixels that are brighter than surrounding

pixels, where there is a sudden change in values. This makes it an edge detector, as shown in Figure 8d.

Convolutional neural nets work, in part, by learning multiple such filters to apply to data like pixel values

to infer, for example, different combinations of edges in different directions sufficient to distinguish faces or

particular objects.

6 Responsible Data Science Projects

Data science is a new field that combines elements from many existing disciplines. One downside to this

novelty is that scientific and ethical standards have not been clearly defined by the community. And, of

course, there are broader public concerns about corporate and government practices in the collection of

data, the protection of data, and the social implications of machine learning, artificial intelligence, and other

data science techniques. In this section, we discuss three considerations that arise when trying to design

responsible data science projects: reproducibility, data privacy, and algorithmic bias.
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A ~Gaussian kernel (high in the middle, lower away from the middle) 
acts as a smoothing or “blur filter” 
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The kernel on the right acts as an “edge filter” 



Source: Wikipedia, “Convolutional Neural Nets”



CNN layers learn filters to detect and combine higher level “features” 



CNN layers learn filters to detect and combine higher level “features” 



http://scs.ryerson.ca/~aharley/vis/ 

Convolutional Neural Network Visualization (Images)

http://scs.ryerson.ca/~aharley/vis/
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Figure 1: Illustration of a CNN architecture for sentence classification. We depict three filter region sizes:
2, 3 and 4, each of which has 2 filters. Filters perform convolutions on the sentence matrix and generate
(variable-length) feature maps; 1-max pooling is performed over each map, i.e., the largest number from
each feature map is recorded. Thus a univariate feature vector is generated from all six maps, and these
6 features are concatenated to form a feature vector for the penultimate layer. The final softmax layer
then receives this feature vector as input and uses it to classify the sentence; here we assume binary
classification and hence depict two possible output states.

also experimented with combining the uni-gram,
bi-gram and word vector features with a linear ker-
nel SVM. We kept only the most frequent 30k n-
grams for all datasets, and tuned hyperparameters
via nested cross-fold validation, optimizing for ac-
curacy (AUC for Irony). For consistency, we used
the same pre-processing steps for the data as de-
scribed in previous work (Kim, 2014). We report
means from 10-folds over all datasets in Table 1.7

Notably, even naively incorporating word2vec em-
beddings into feature vectors usually improves re-
sults.

7Note that parameter estimation for SVM via QP is deter-
ministic, thus we do not replicate the cross validation here.

4.1 Baseline Configuration

We first consider the performance of a baseline
CNN configuration. Specifically, we start with the
architectural decisions and hyperparameters used
in previous work (Kim, 2014) and described in
Table 2. To contextualize the variance in per-
formance attributable to various architecture de-
cisions and hyperparameter settings, it is critical
to assess the variance due strictly to the parame-
ter estimation procedure. Most prior work, unfor-
tunately, has not reported such variance, despite
a highly stochastic learning procedure. This vari-
ance is attributable to estimation via SGD, random
dropout, and random weight parameter initializa-
tion. Holding all variables (including the folds)

Source: Zhang and Wallace (2015)

Typical CNN architecture for NLP 7-gram features detected by CNN

Source: Kalchbrenner, et al. (2014)
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Modeling sequence with recurrence
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One big bi-LSTM success was ELMo — contextual embeddings









Sequence-to-sequence, or seq2seq











Attention



Following images/videos from Jay Alammar, “The Illustrated 
Transformer” and “Visualizing a Neural Machine Translation Model 
(Mechanics of Seq2seq Models with Attention”)

























The transformer (“Attention is All You Need”)

















Matrix math of self-attention - yada yada yada 

Multi-headed attention - blah blah blah










