

Day 6 - From Recurrent Nets to Transformers

Advanced Text as Data: Natural Language Processing Essex Summer School in Social Science Data Analysis

Burt L. Monroe (Instructor) & Sam Bestvater (TA) Pennsylvania State University

August 3, 2021

Today

- features
- seq2seq
- Gating in recurrent networks (LSTMs / bi-LSTMs) •
- Attention mechanism in seq2seq models •
- Self-attention & positional encodings (transformer) •

Convolutional Neural Nets (CNNs) - Convolution, filters/kernels, higher-level

Recurrent Neural Nets (RNNs) - Recurrence / sequence, encoder-decoder

Today (unlikely)

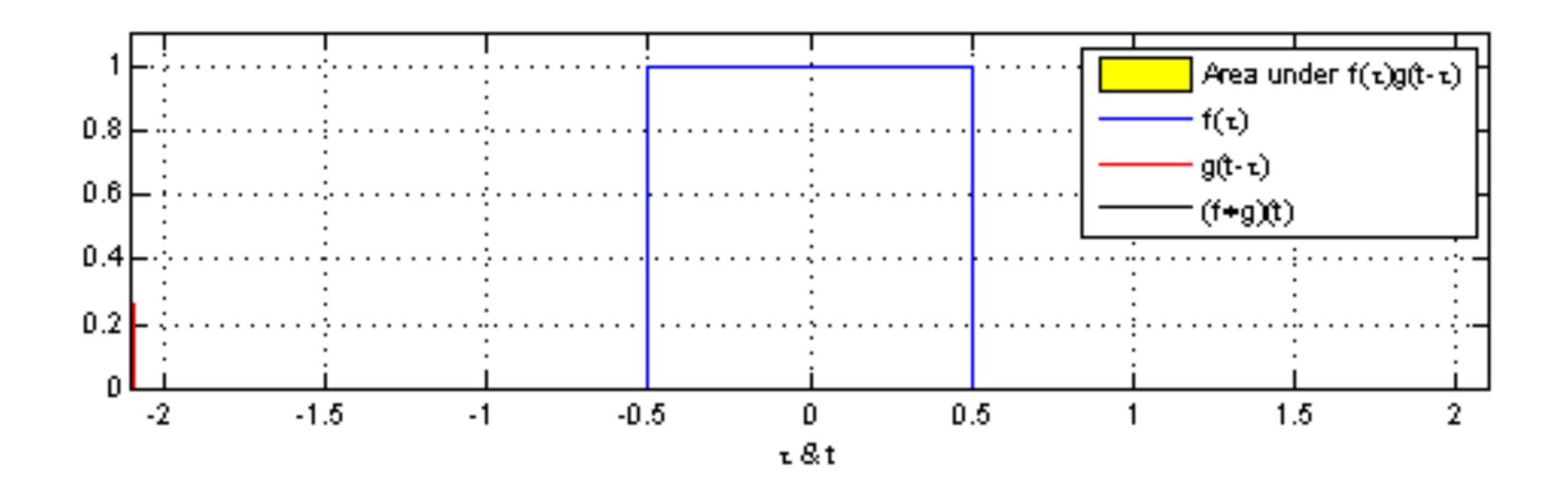
- features
- seq2seq
- Gating in recurrent networks (LSTMs / bi-LSTMs) •
- Attention mechanism in seq2seq models •
- Self-attention & positional encodings (transformer) •

Convolutional Neural Nets (CNNs) - Convolution, filters/kernels, higher-level

Recurrent Neural Nets (RNNs) - Recurrence / sequence, encoder-decoder

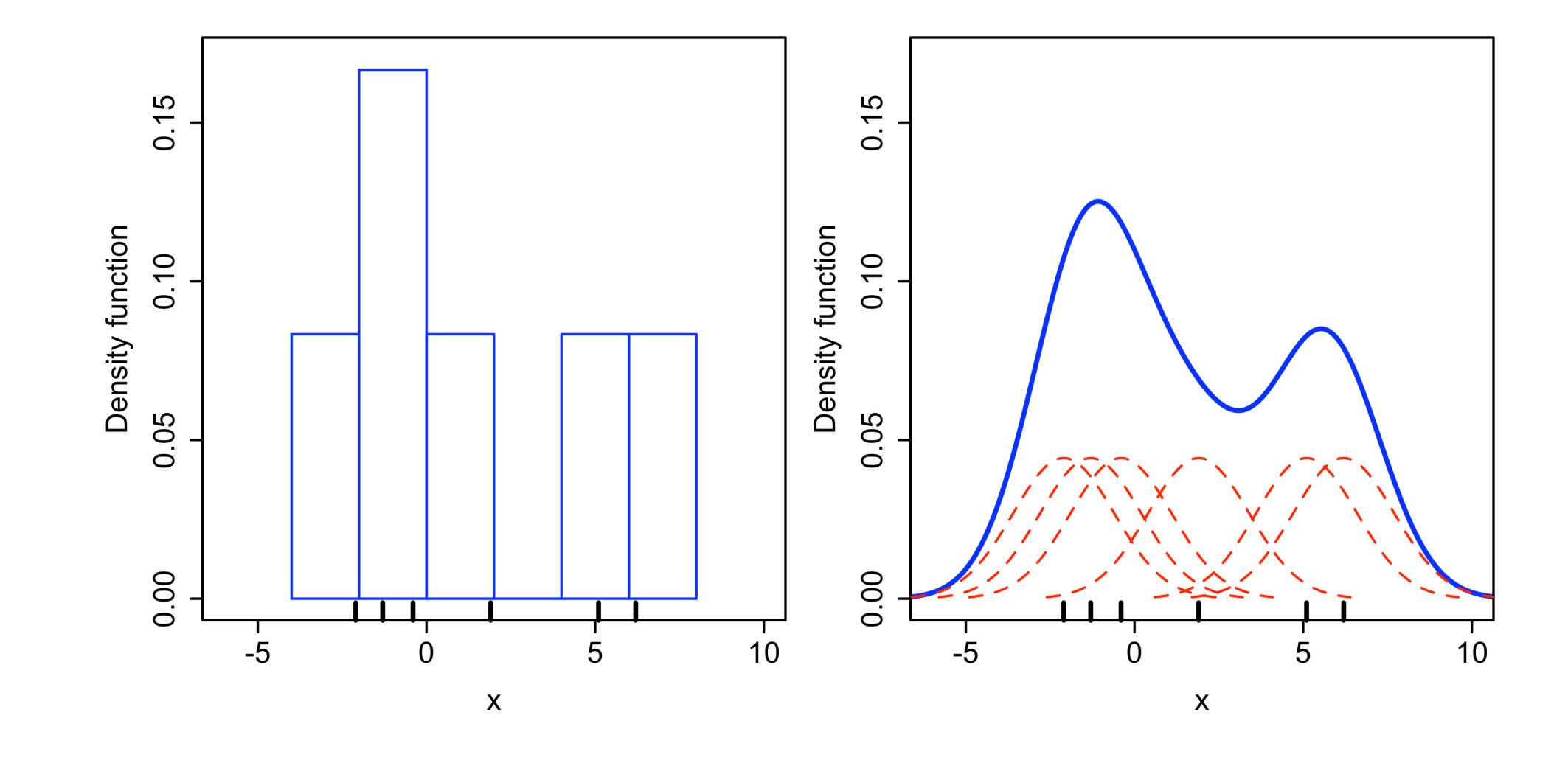
Convolution, Convolutional Neural Nets, and CNNs in NLP

Convolution



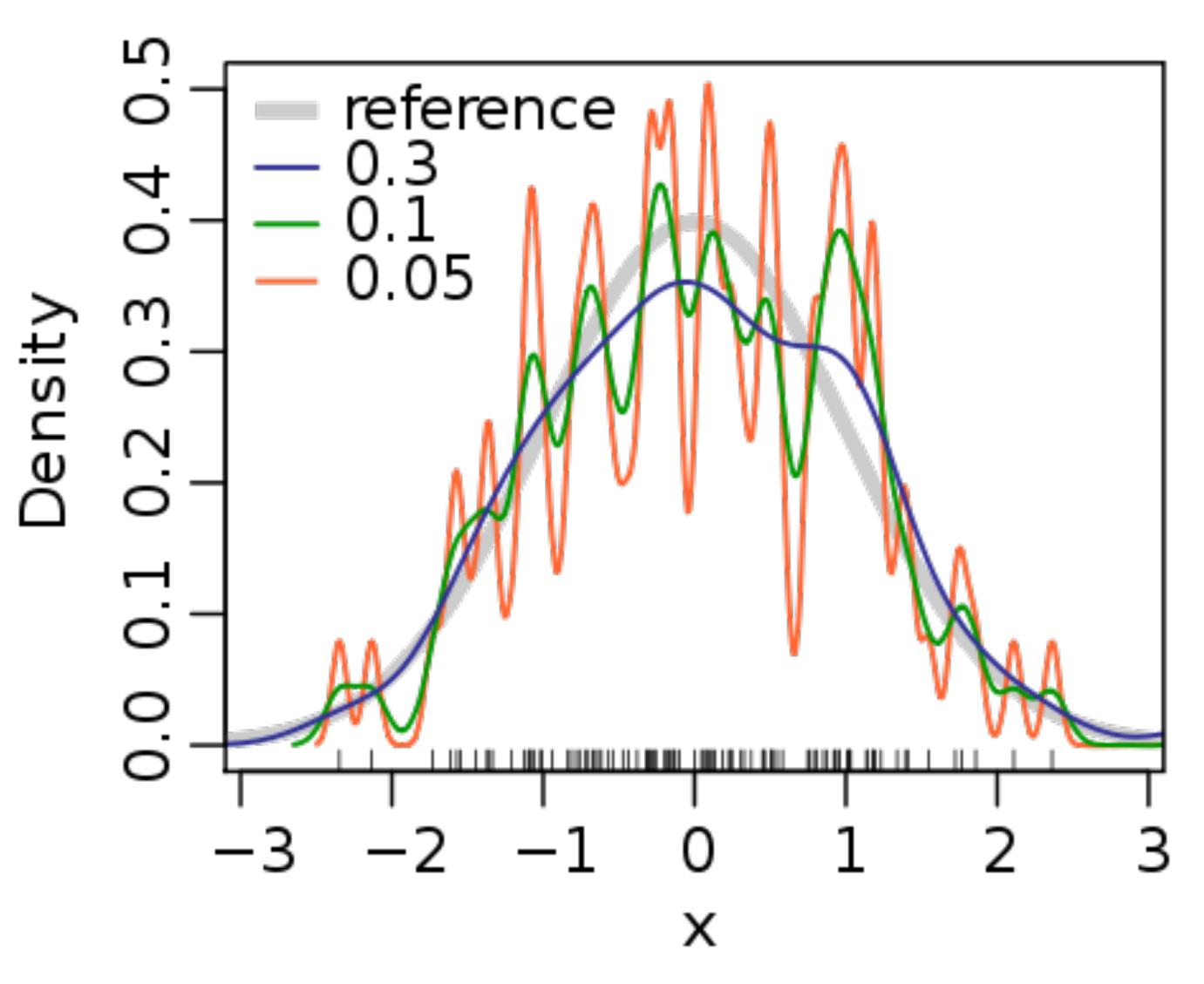
Source: Wikipedia, "Convolution"

Kernel density — smooth histogram by convolving a Gaussian over observations



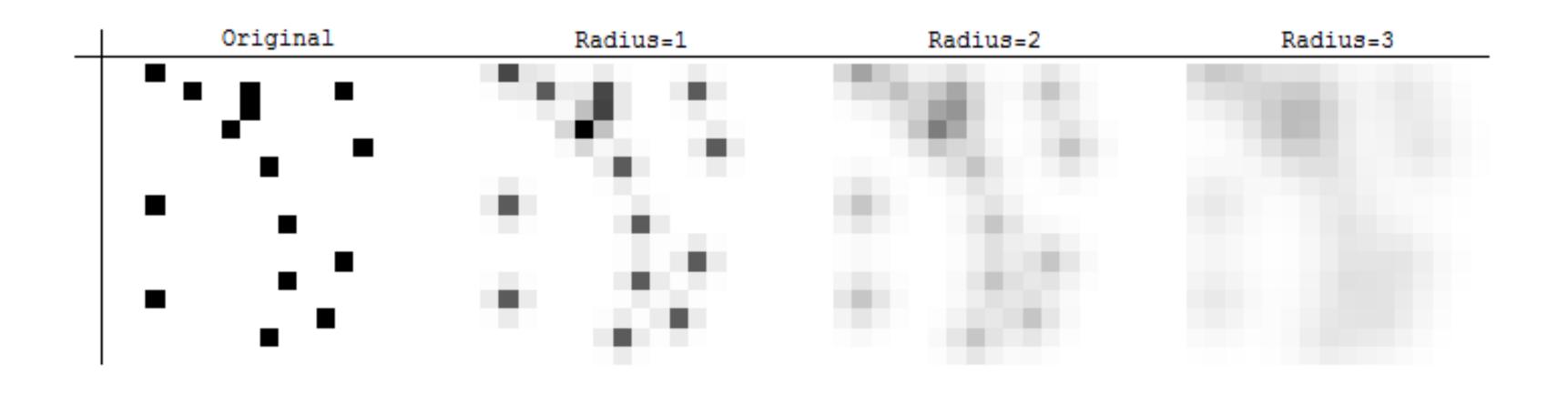
Source: Wikipedia, "Kernel Density"

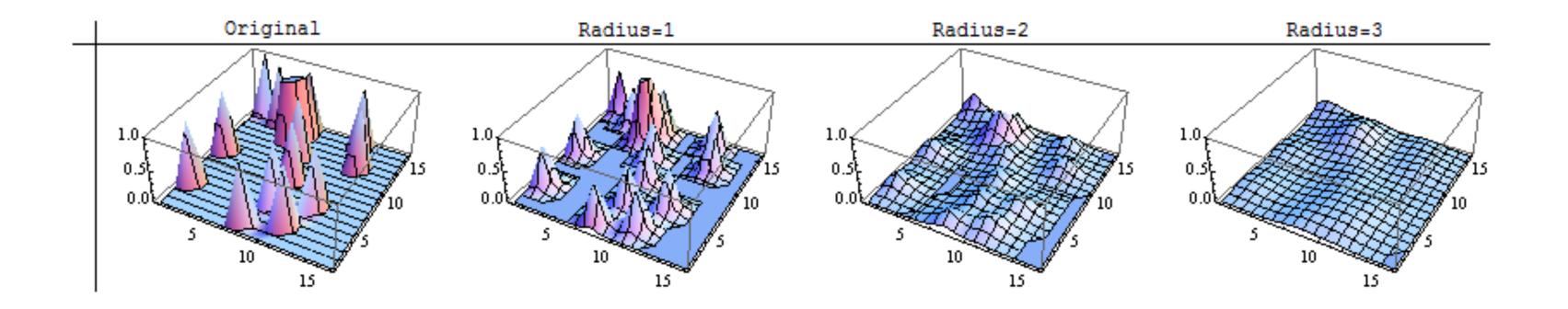
Kernel density — how smooth depends on variance / "width" of the Gaussian



Source: Wikipedia, "Kernel Density"

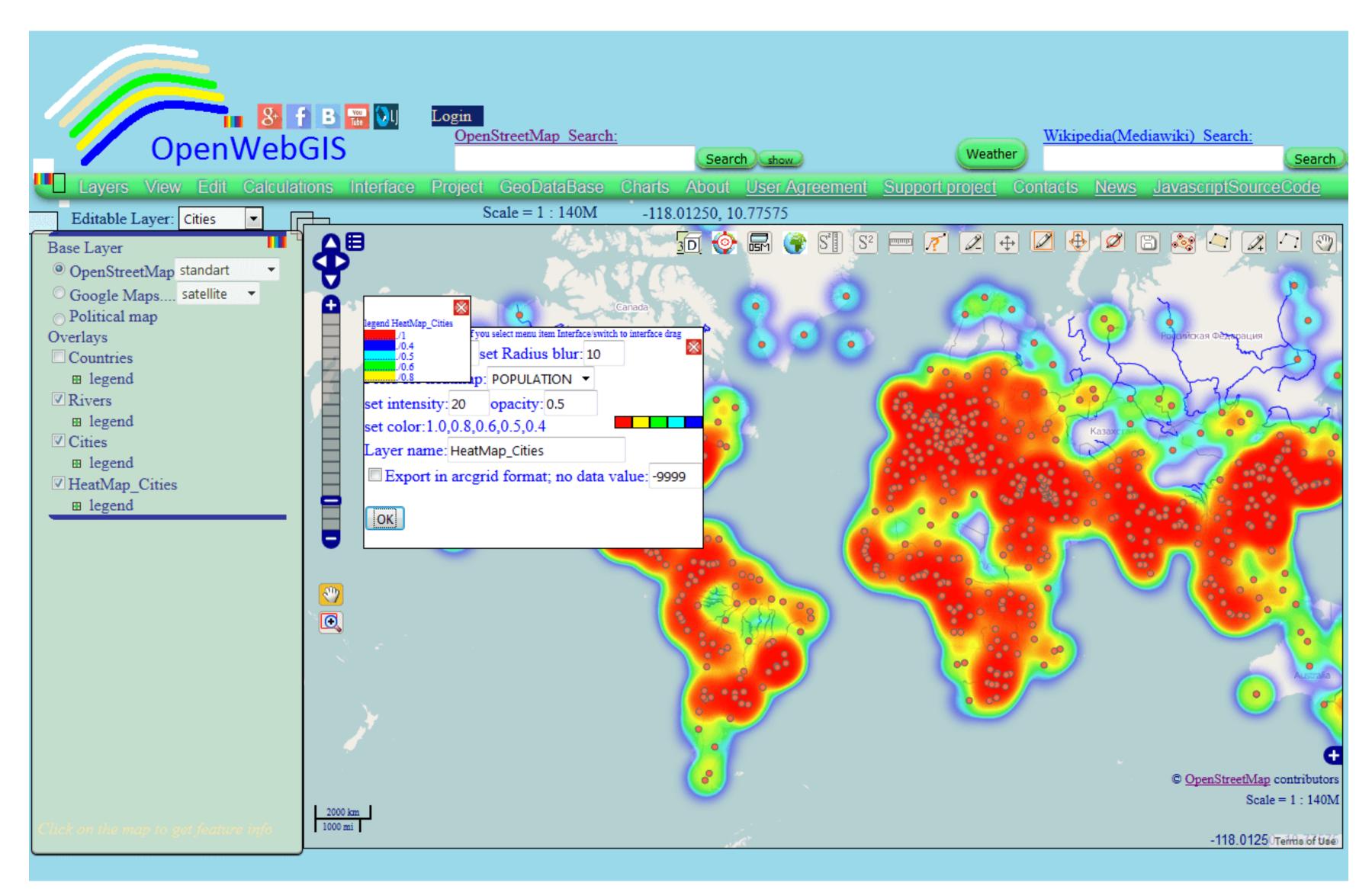
Kernel density — smooth in two dimensions





Source: Wikipedia, "Kernel Density"

Kernel density — this is familiar in "heatmaps"



Source: Fedor Kolomeyko, <u>www.digital-geography.com</u>

Now imagine an image as two-dimensional data — a grid of pixel intensities

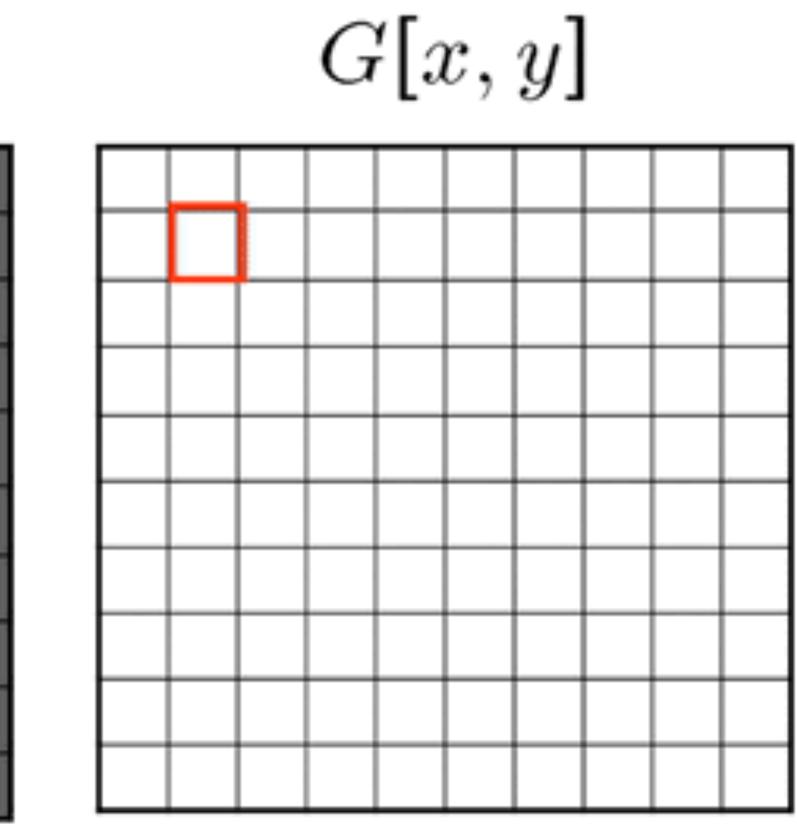
157	153	174	168	150	152	129	151	172	161	155	156	157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154	155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	84	6	10	33	48	105	159	181	180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180	206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201	194	68	137	251	237	239	239	228	227	87	п	201
172	105	207	233	233	214	220	239	228	98	74	206	172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169	188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148	189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190	199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234	205	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	85	150	79	38	218	241	190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	35	101	255	224	190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215	190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	٥	6	217	255	211	187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236	183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218	195	206	123	207	177	121	123	200	175	13	96	218

Source: Stanford Artificial Intelligence Laboratory, Introduction to Computer Vision, "Image Filtering"

F[x, y]

0	0	. 0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	
0	0	0	90	90	90	90	90	0	1
0	0	0	90	90	90	90	90	0	
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	1
0	0	0	0	0	0	0	0	0	0
0	- 0 -	90	- 0 -	0	0	0	0	0	. 0
0	0	0	0	0	- 0	0	0.	0	. 0

An image *filter* is a kernel - a small window we convolve over an image. The filter illustrated here averages the nine pixels in the window.

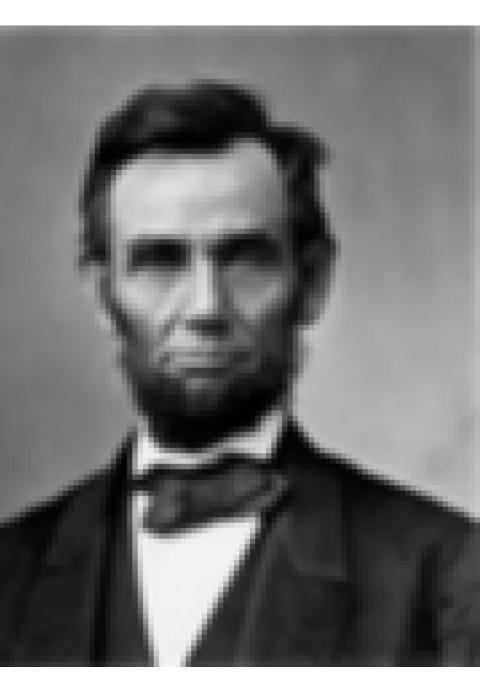


Source: Stanford Artificial Intelligence Laboratory, Introduction to Computer Vision, "Image Filtering"

A ~Gaussian kernel (high in the middle, lower away from the middle) acts as a smoothing or "blur filter"

0.0625	0.125	0.0625
0.125	0.25	0.125
0.0625	0.125	0.0625

(a) Blur kernel.



(b) Blur kernel applied.

-1	-1	-1
-1	8	-1
-1	-1	-1

The kernel on the right acts as an "edge filter"

0.06250.1250.06250.1250.250.1250.06250.1250.0625

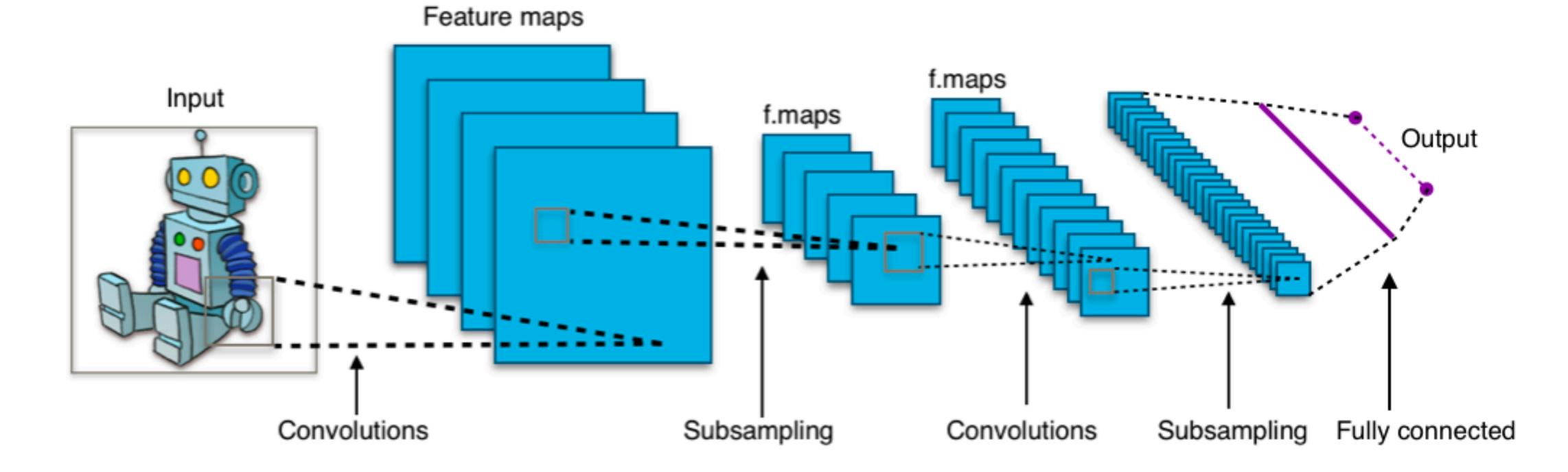
(a) Blur kernel.

(b) Blur kernel applied.

Figure 8: Effect of convolutional image kernels.

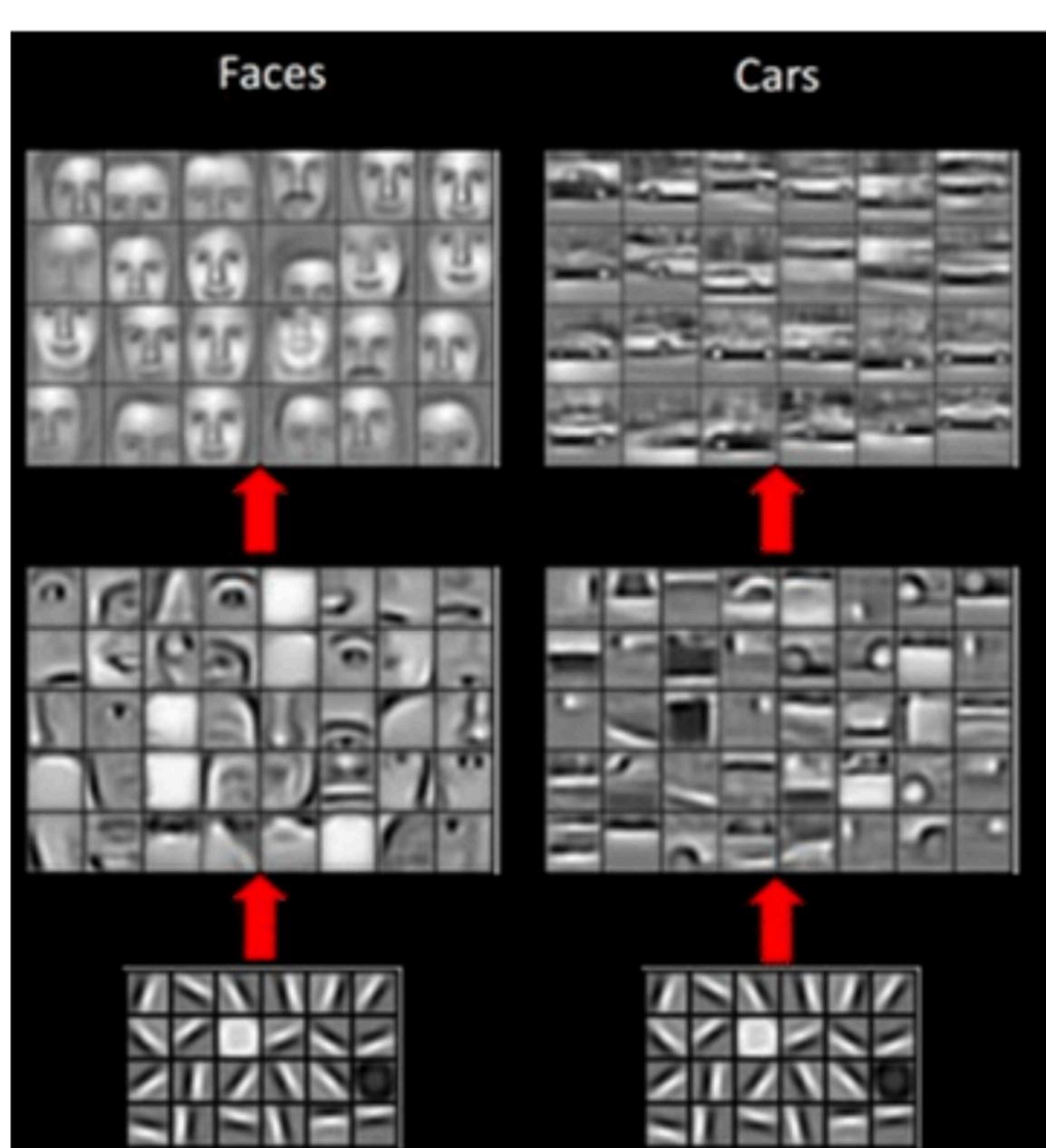
(c) Edge kernel.

(d) Edge kernel applied.



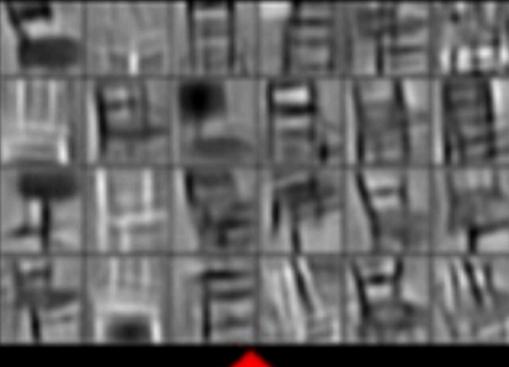
Source: Wikipedia, "Convolutional Neural Nets"

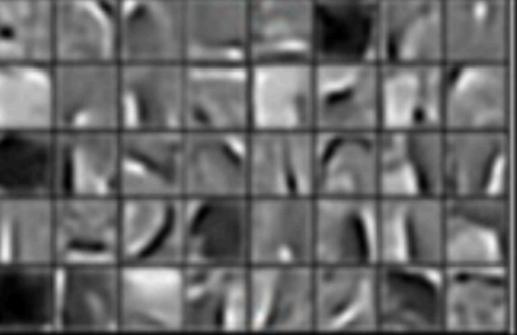
CNN layers learn filters to detect and combine higher level "features"

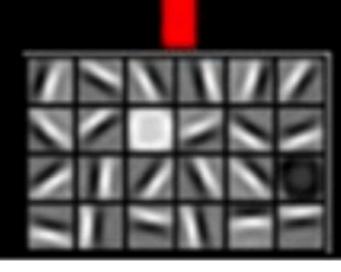


Elephants

Chairs

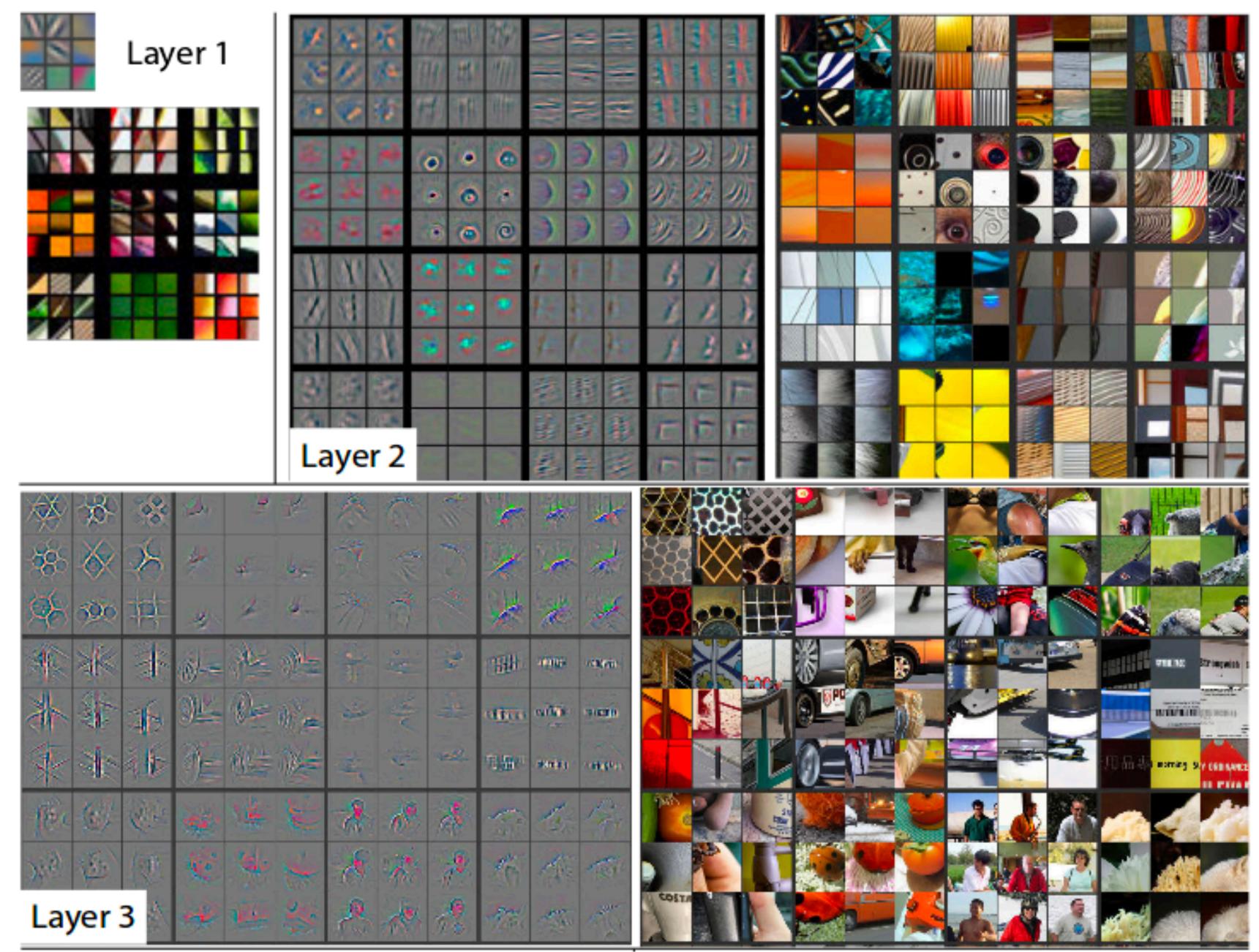






-

CNN layers learn filters to detect and combine higher level "features"



Convolutional Neural Network Visualization (Images)

http://scs.ryerson.ca/~aharley/vis/

Typical CNN architecture for NLP

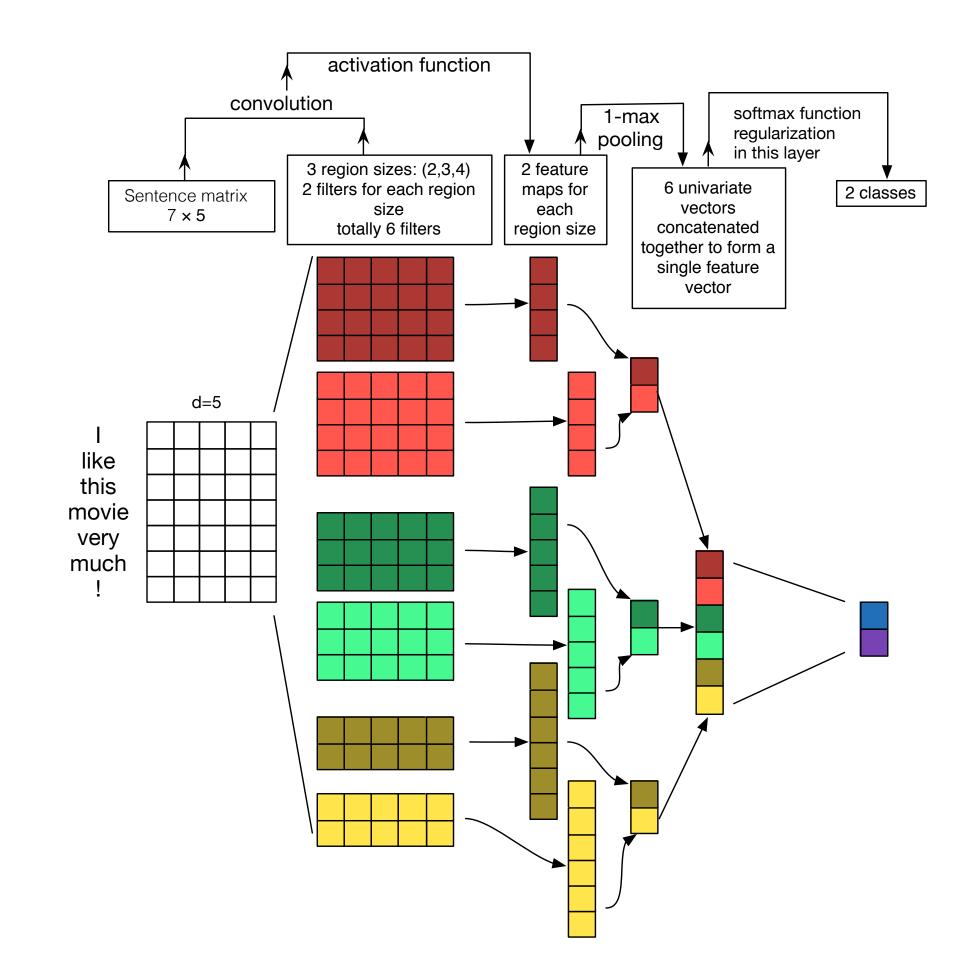
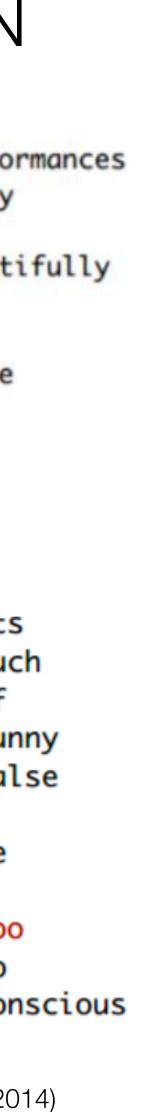


Figure 1: Illustration of a CNN architecture for sentence classification. We depict three filter region sizes: 2, 3 and 4, each of which has 2 filters. Filters perform convolutions on the sentence matrix and generate (variable-length) feature maps; 1-max pooling is performed over each map, i.e., the largest number from each feature map is recorded. Thus a univariate feature vector is generated from all six maps, and these 6 features are concatenated to form a feature vector for the penultimate layer. The final softmax layer then receives this feature vector as input and uses it to classify the sentence; here we assume binary classification and hence depict two possible output states.

7-gram features detected by CNN

					POS	IT	IVE			
lovely		comedi	с	moments	and		several	fine	pe	rfo
good		script		,	good		dialogue	,	fu	nny
sustains	5	throug	hout	is	dari	ng	,	inventive	an	d
well		writte	n	,	nice	ly	acted	and	be	aut
remarkat	oly	solid		and		-	satirical IVE	tour	de	
,		nonexi	stent	plot	and		pretentiou	s visual	st	yle
it		fails		the	most		basic	test	as	
SO		stupid		,	SO		ill	conceived	,	
,		too		dull	and		pretentiou	s to	be	
hood		rats		butt	thei	r	ugly	heads	in	
						NO				
n't	ha	/e	any		huge	10	lughs	in		its
no	mo\	vement	,		no	,		not		muc
n't	sto	р	me		from	er	ijoying	much		of
not	th	at	kung		ром	is	5	n't		fur
not	а		momer	nt	that	is	5	not		fal
						Т0	0'			
,	too	C	dull		and	pr	retentious	to		be
either	to	C	serio	ous	or	to	00	lightheart	ed	,
too	slo	w	,		too	lo	ong	and		too
feels	too	C	formu	ulaic	and	to	00	familiar		to
is	too	C	predi	ctable	and	to	00	self		cor

Source: Kalchbrenner, et al. (2014)



Typical CNN architecture for NLP

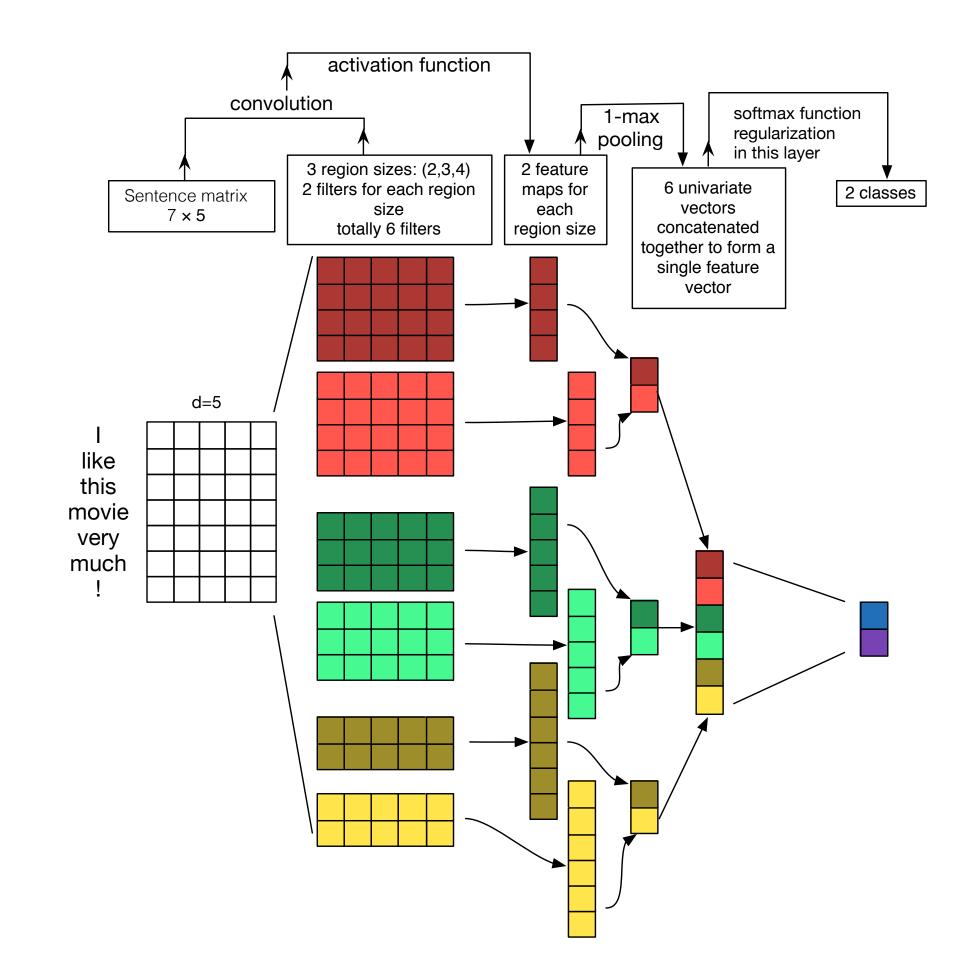
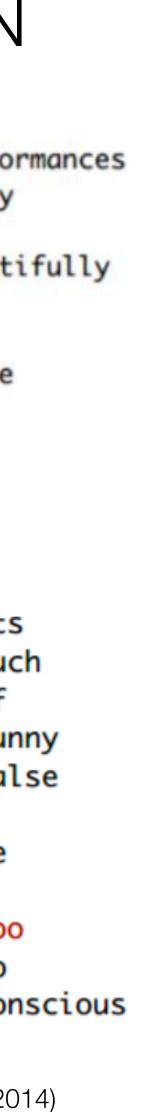


Figure 1: Illustration of a CNN architecture for sentence classification. We depict three filter region sizes: 2, 3 and 4, each of which has 2 filters. Filters perform convolutions on the sentence matrix and generate (variable-length) feature maps; 1-max pooling is performed over each map, i.e., the largest number from each feature map is recorded. Thus a univariate feature vector is generated from all six maps, and these 6 features are concatenated to form a feature vector for the penultimate layer. The final softmax layer then receives this feature vector as input and uses it to classify the sentence; here we assume binary classification and hence depict two possible output states.

7-gram features detected by CNN

					POS	IT	IVE			
lovely		comedi	с	moments	and		several	fine	pe	rfo
good		script		,	good		dialogue	,	fu	nny
sustains	5	throug	hout	is	dari	ng	,	inventive	an	d
well		writte	n	,	nice	ly	acted	and	be	aut
remarkat	oly	solid		and		-	satirical IVE	tour	de	
,		nonexi	stent	plot	and		pretentiou	s visual	st	yle
it		fails		the	most		basic	test	as	
SO		stupid		,	SO		ill	conceived	,	
,		too		dull	and		pretentiou	s to	be	
hood		rats		butt	thei	r	ugly	heads	in	
						NO				
n't	ha	/e	any		huge	10	lughs	in		its
no	mo\	vement	,		no	,		not		muc
n't	sto	р	me		from	er	ijoying	much		of
not	th	at	kung		ром	is	5	n't		fur
not	а		momer	nt	that	is	5	not		fal
						Т0	0'			
,	too	C	dull		and	pr	retentious	to		be
either	to	C	serio	ous	or	to	00	lightheart	ed	,
too	slo	w	,		too	lo	ong	and		too
feels	too	C	formu	ulaic	and	to	00	familiar		to
is	too	C	predi	ctable	and	to	00	self		cor

Source: Kalchbrenner, et al. (2014)

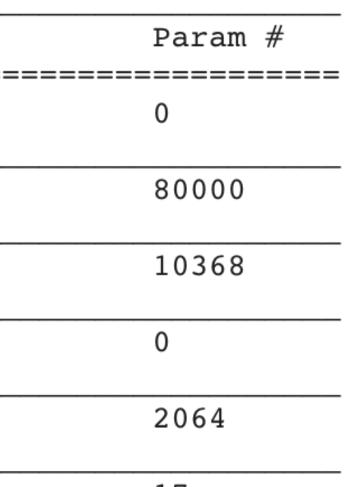


Build the model

inputs = keras.Input(shape=(None,), dtype="int32") x = layers.Embedding(max_features, 16)(inputs) # x = layers.GlobalMaxPooling1D()(x) x = layers.Dense(16, activation = 'relu')(x) outputs = layers.Dense(1, activation="sigmoid")(x) # model = keras.Model(inputs, outputs) # model.summary()

Model: "model_1"

Layer (type)	Output	Shape	
input_4 (InputLayer)	[(None	, None)]
embedding_3 (Embedding)	(None,	None,	16)
convld_3 (ConvlD)	(None,	None,	128)
global_max_pooling1d_2 (Glob	(None,	128)	
dense_4 (Dense)	(None,	16)	
dense_5 (Dense)	(None,	1)	
Total params: 92,449 Trainable params: 92,449 Non-trainable params: 0			



17

Modeling sequence with recurrence

Sequence Modeling Applications

One to One **Binary Classification**

x

"Will I pass this class?" Student \rightarrow Pass?

Massachusetts

Institute of

Technology

Many to One

Sentiment Classification

Ivar Hagendoorn IlvarHagendoorn

Follow

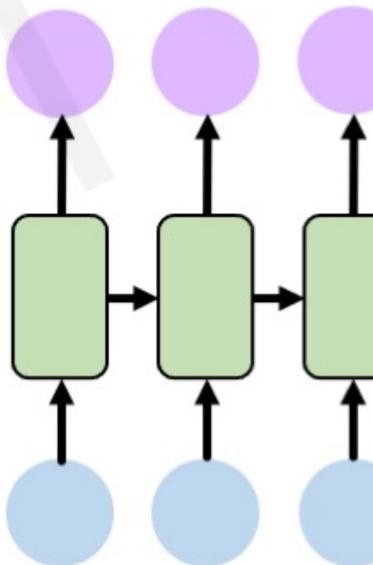
The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online introtodeeplearning.com

12:45 PM - 12 Feb 2018

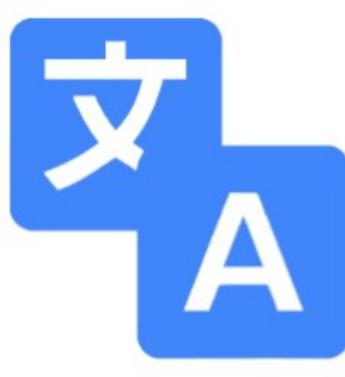
introtodeeplearning.com

"A baseball player throws a ball."

6.S191 Introduction to Deep Learning MITDeepLearning

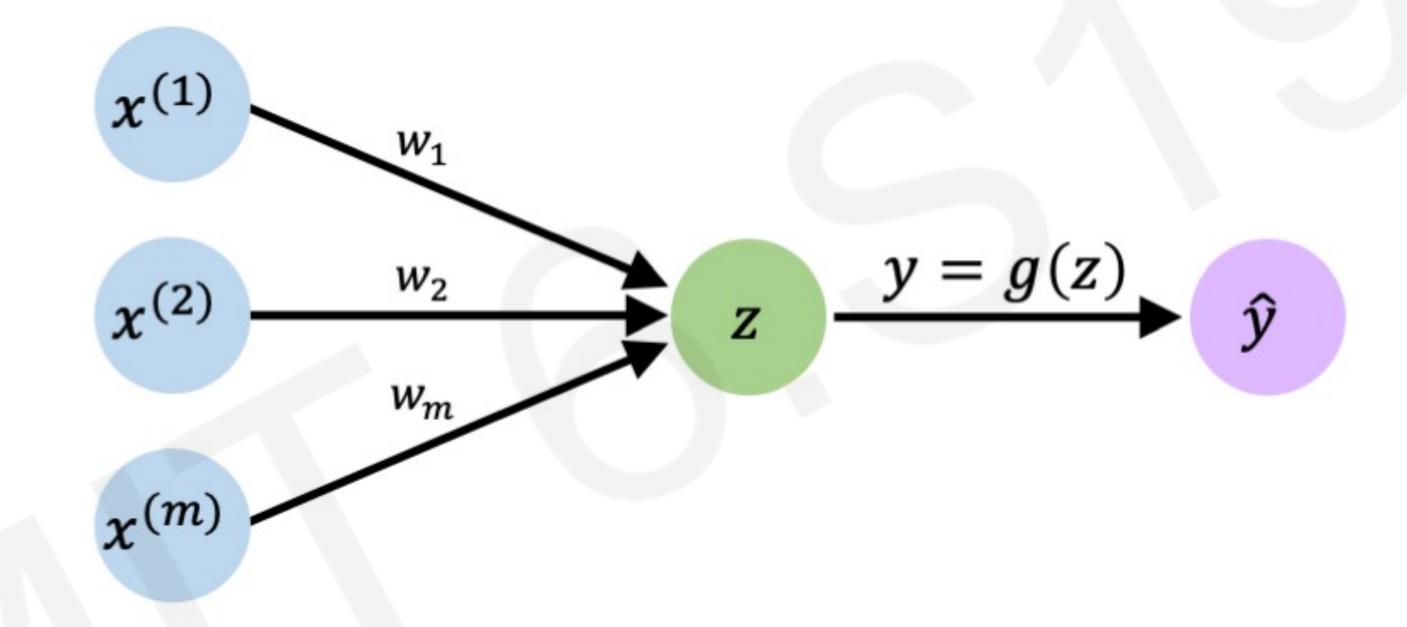


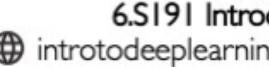
Many to Many **Machine Translation**



1/19/21

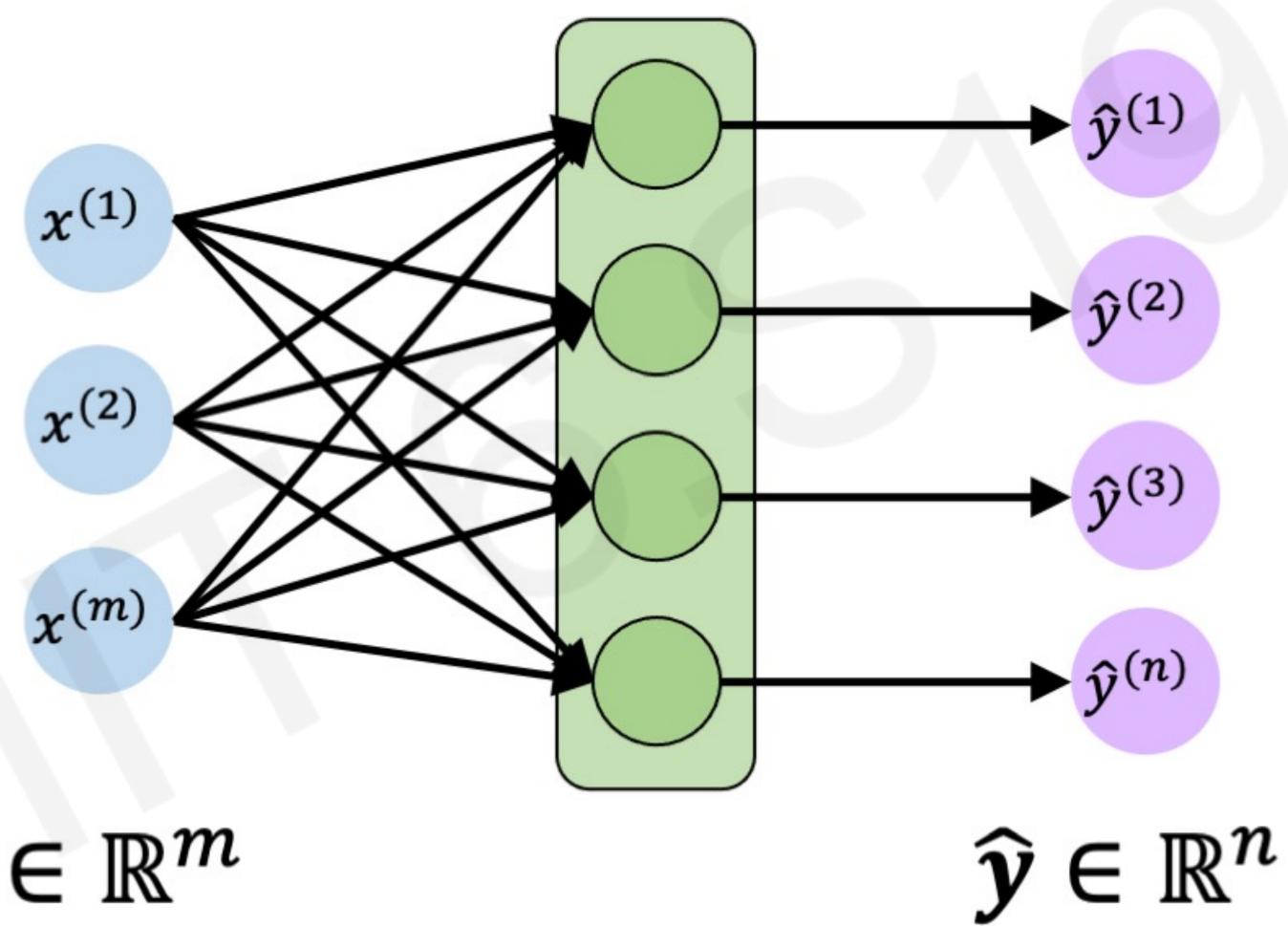
The Perceptron Revisited





6.S191 Introduction to Deep Learning introtodeeplearning.com S@MITDeepLearning

Feed-Forward Networks Revisited



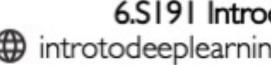
 $\mathbf{x} \in \mathbb{R}^m$

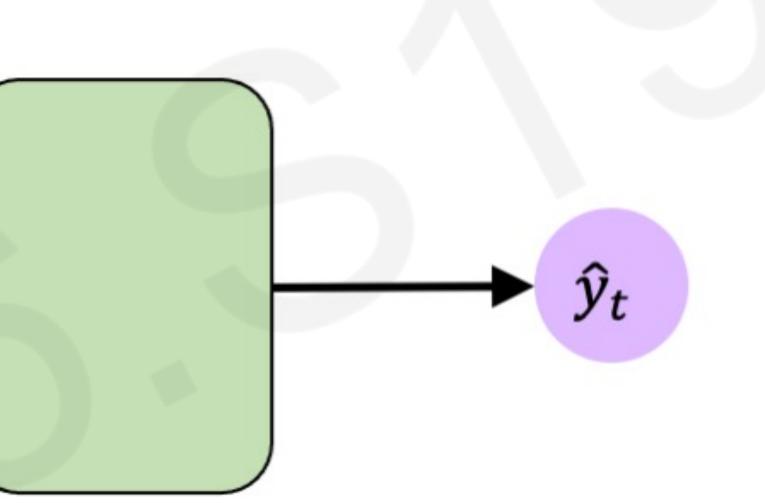
6.S191 Introduction to Deep Learning introtodeeplearning.com
@MITDeepLearning

Feed-Forward Networks Revisited

$x_t \in \mathbb{R}^m$

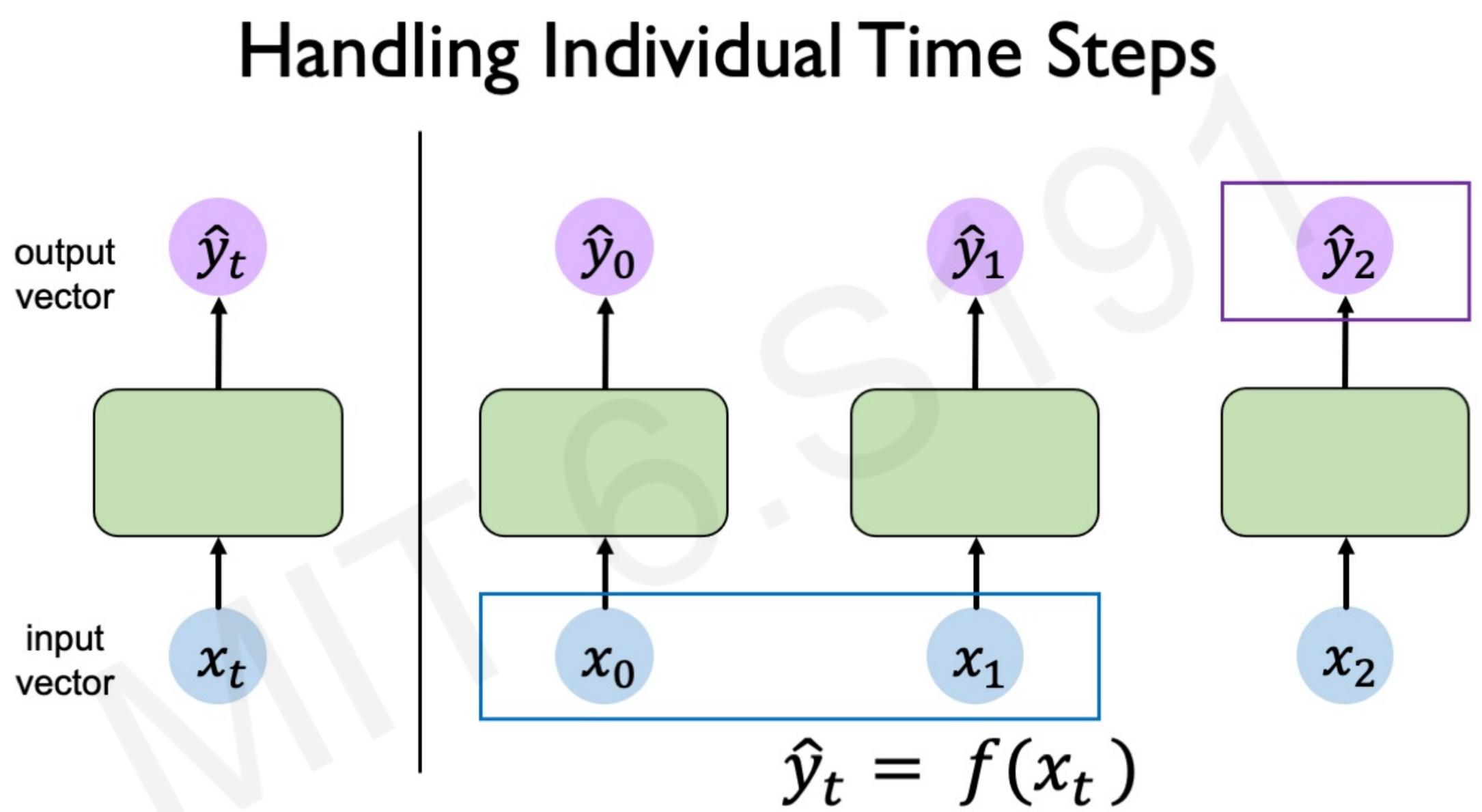
 x_t

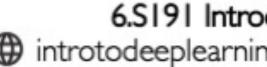




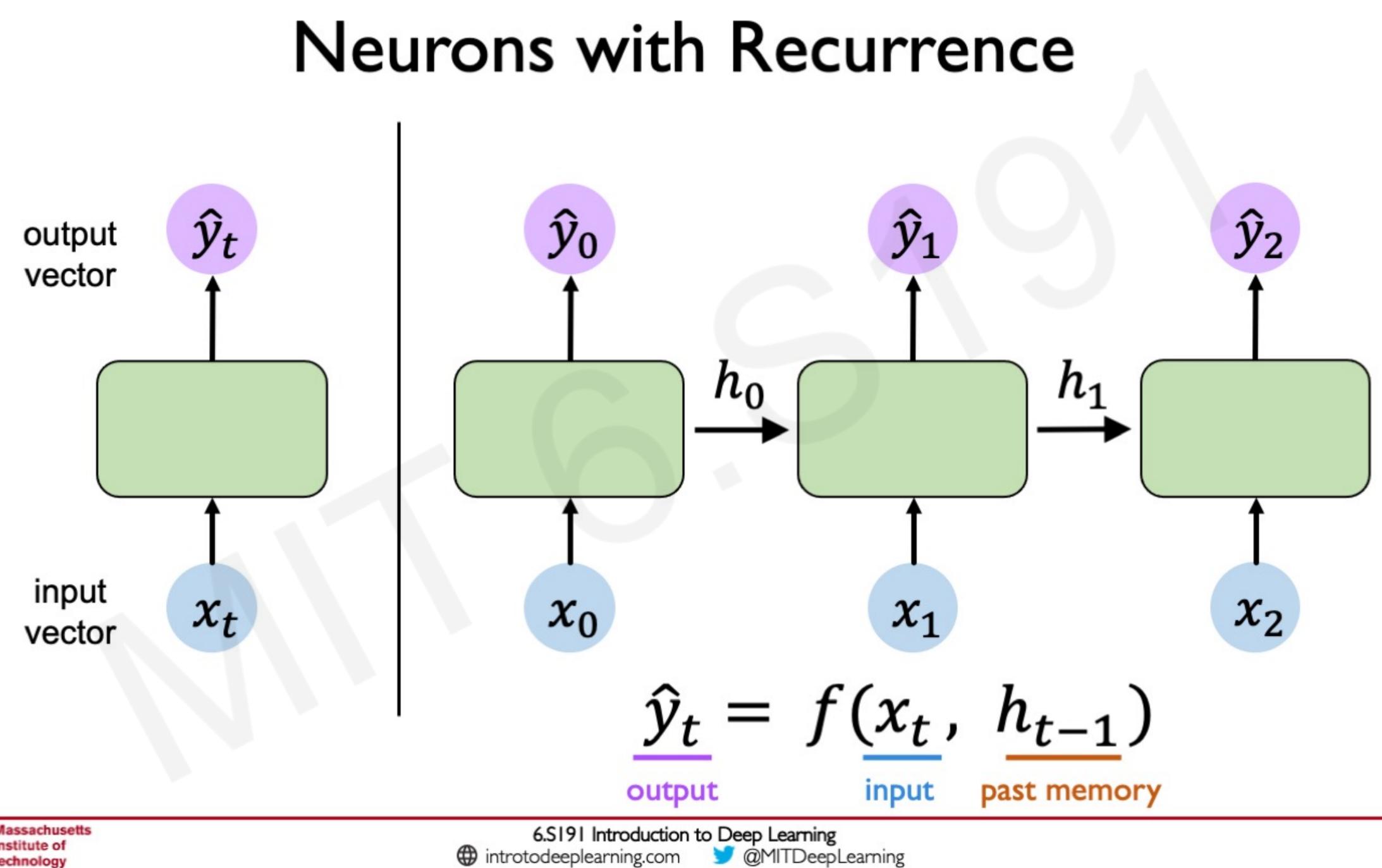
$\hat{y}_t \in \mathbb{R}^n$

6.S191 Introduction to Deep Learning introtodeeplearning.com Signature @MITDeepLearning

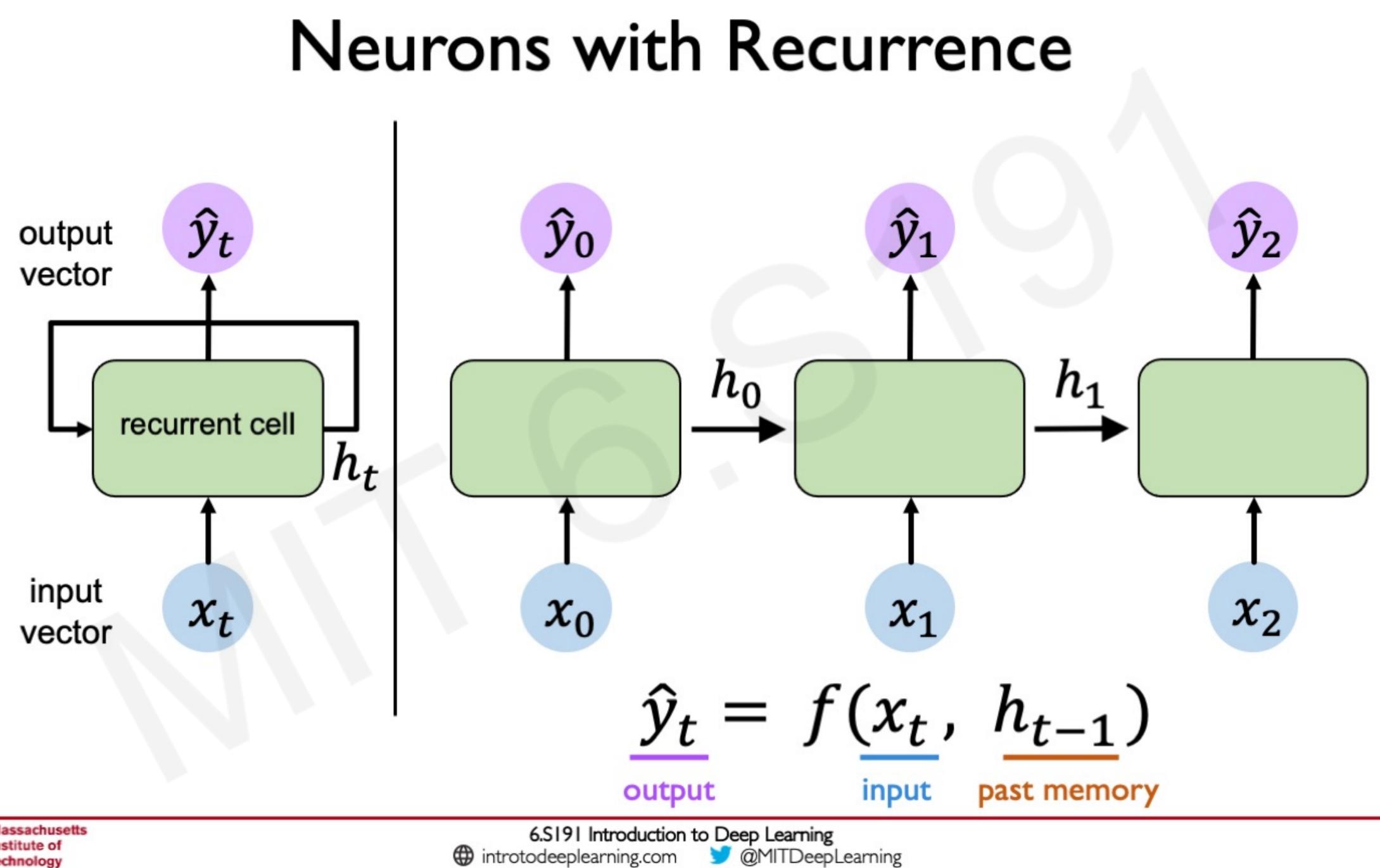




6.S191 Introduction to Deep Learning introtodeeplearning.com
@MITDeepLearning

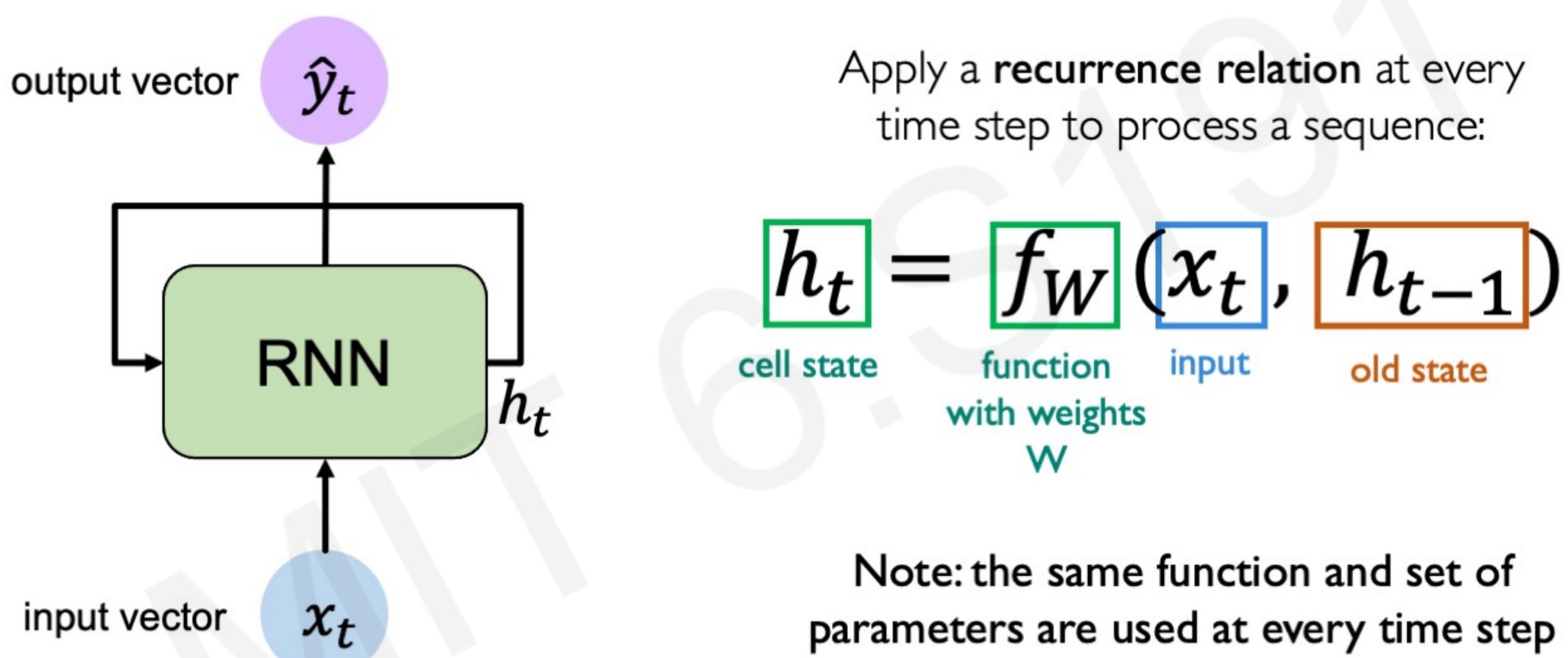


introtodeeplearning.com

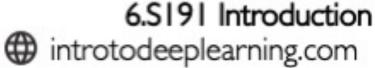


introtodeeplearning.com

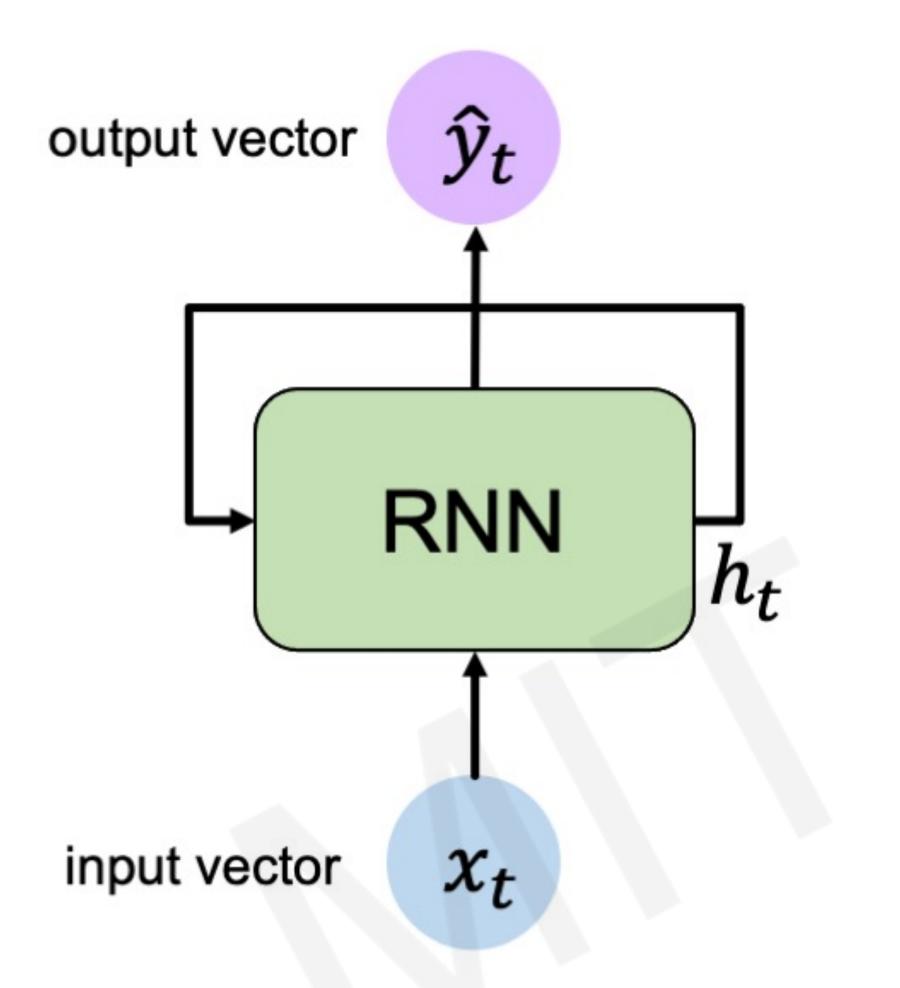
Recurrent Neural Networks (RNNs)



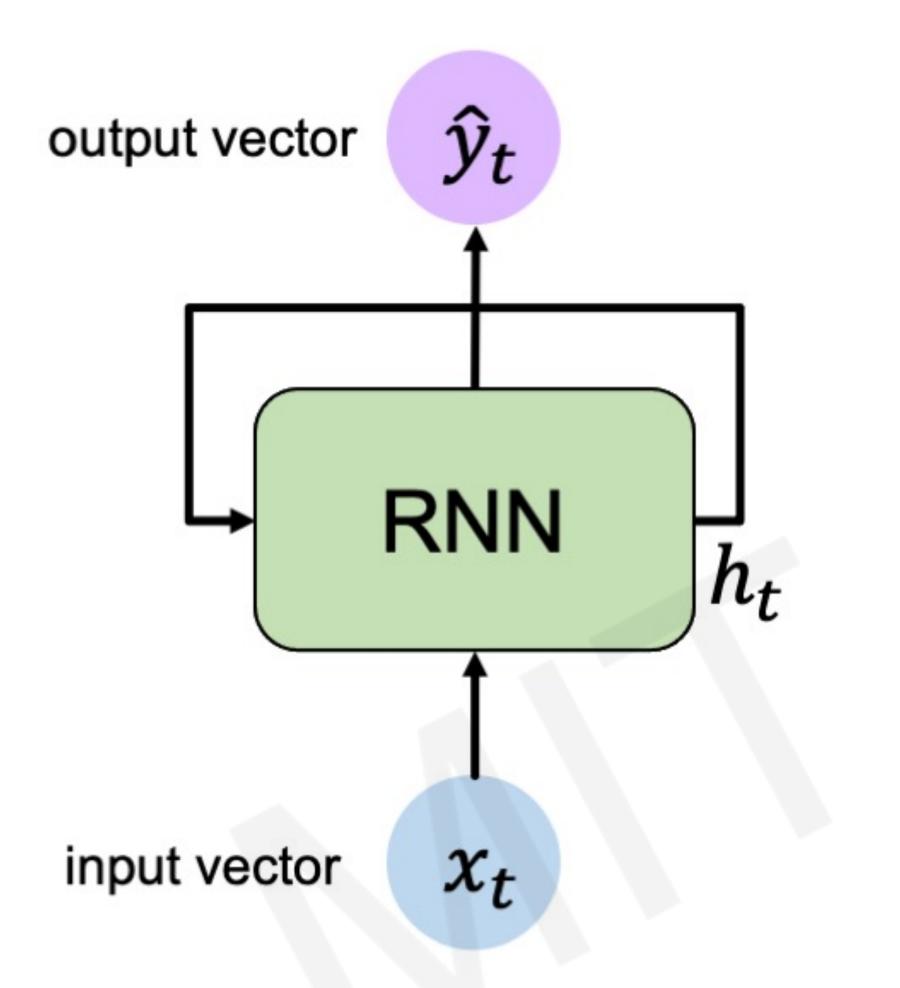
RNNs have a state, h_t , that is updated at each time step as a sequence is processed



6.5191 Introduction to Deep Learning @MITDeepLearning

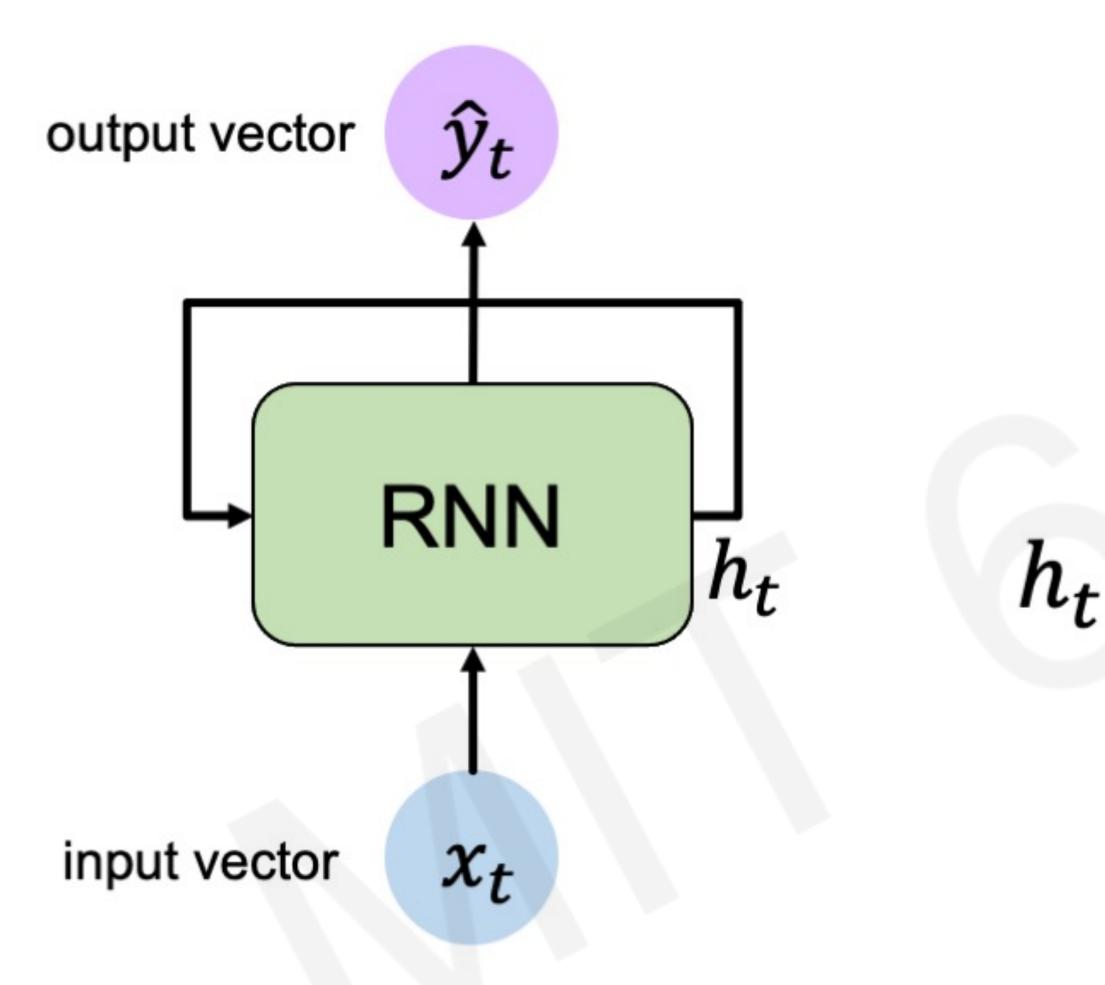


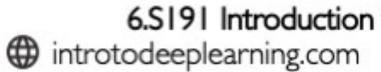
6.S191 Introduction to Deep Learning introtodeeplearning.com
@MITDeepLearning



Input Vector χ_t

6.S191 Introduction to Deep Learning introtodeeplearning.com
@MITDeepLearning

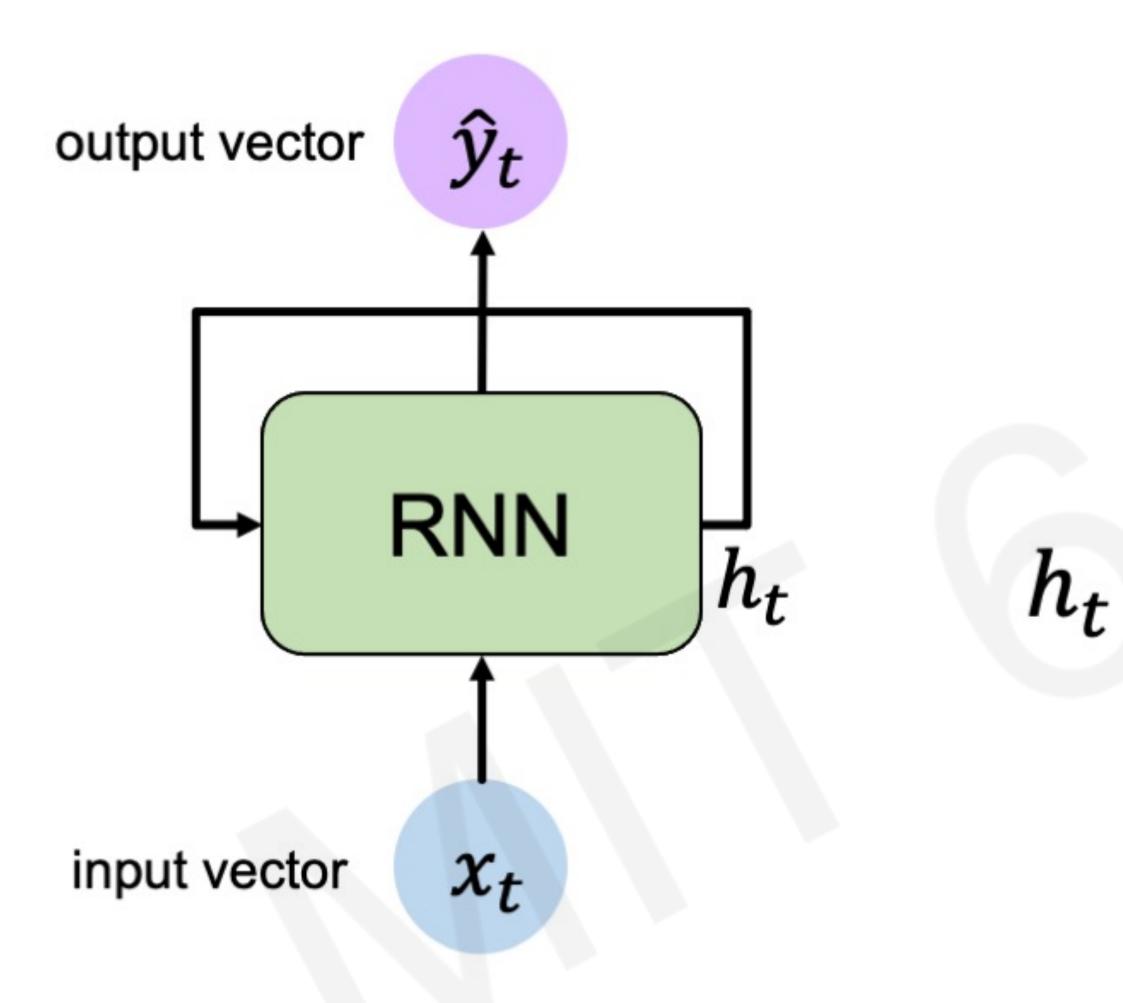




Update Hidden State $h_t = \tanh(\boldsymbol{W}_{hh}^T h_{t-1} + \boldsymbol{W}_{xh}^T x_t)$

Input Vector χ_t

6.S191 Introduction to Deep Learning MITDeepLearning



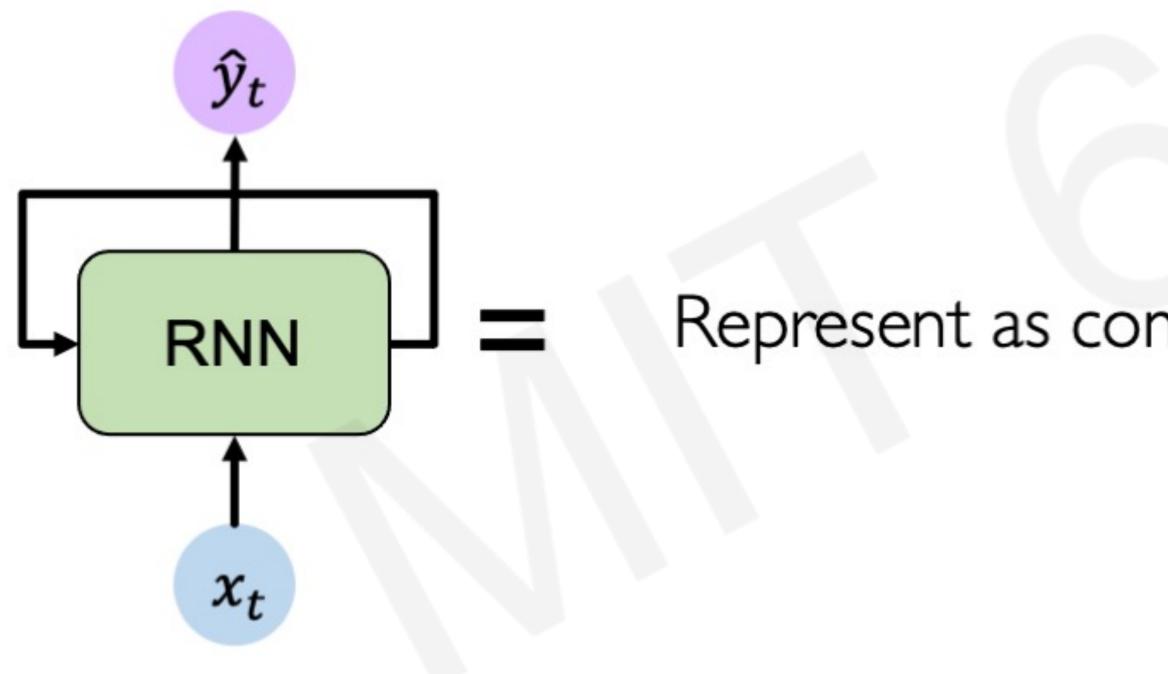
Output Vector $\hat{y}_t = W_{hy}^T h_t$

Update Hidden State $h_t = \tanh(W_{hh}^T h_{t-1} + W_{xh}^T x_t)$

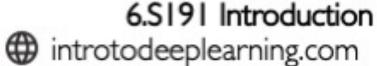
Input Vector x_t

6.S191 Introduction to Deep Learning MITDeepLearning

RNNs: Computational Graph Across Time

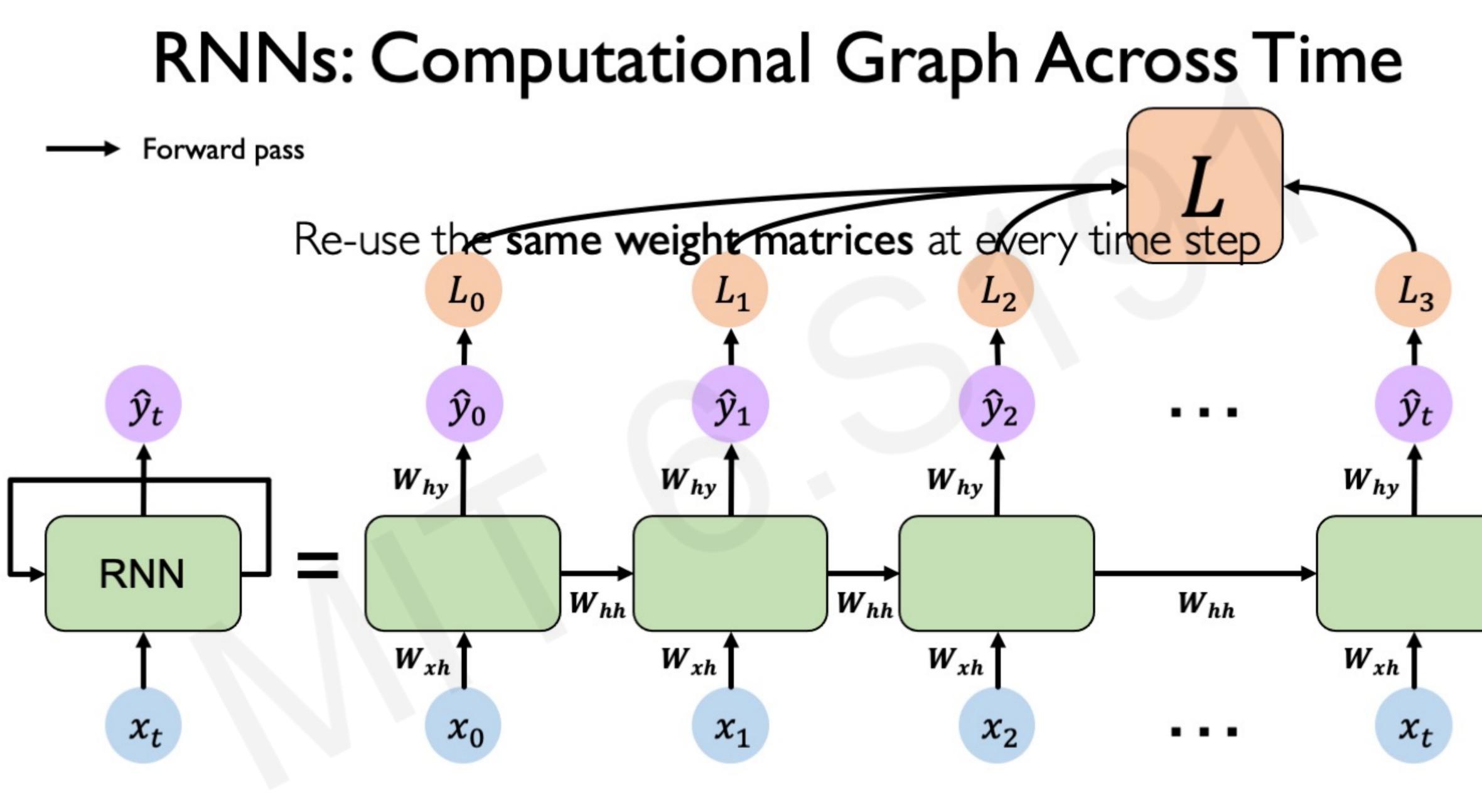


Massachusetts Institute of Technology

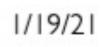


Represent as computational graph unrolled across time

6.S191 Introduction to Deep Learning MITDeepLearning

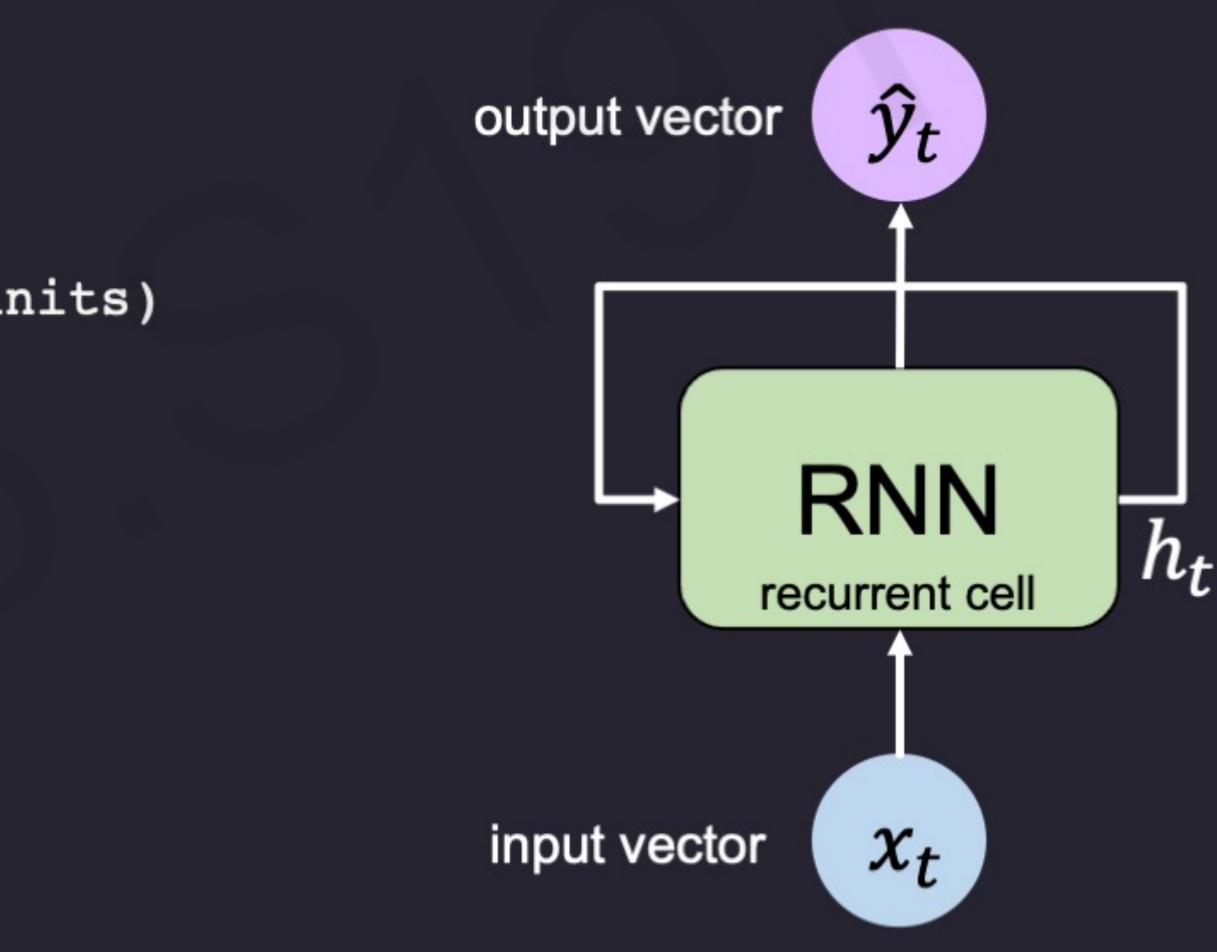


Massachusetts Institute of Technology 6.S191 Introduction to Deep Learning ⊕ introtodeeplearning.com S @MITDeepLearning



RNN Implementation in TensorFlow

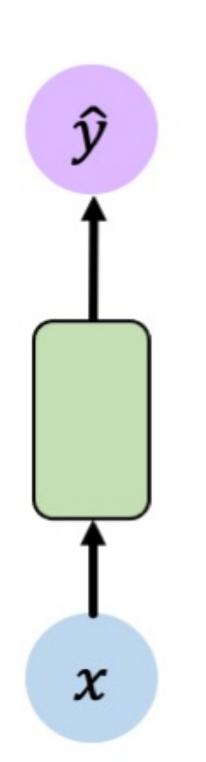
tf.keras.layers.SimpleRNN(rnn_units)



6.S191 Introduction to Deep Learning odeeplearning.com Solution @MITDeepLearning

1/19/21

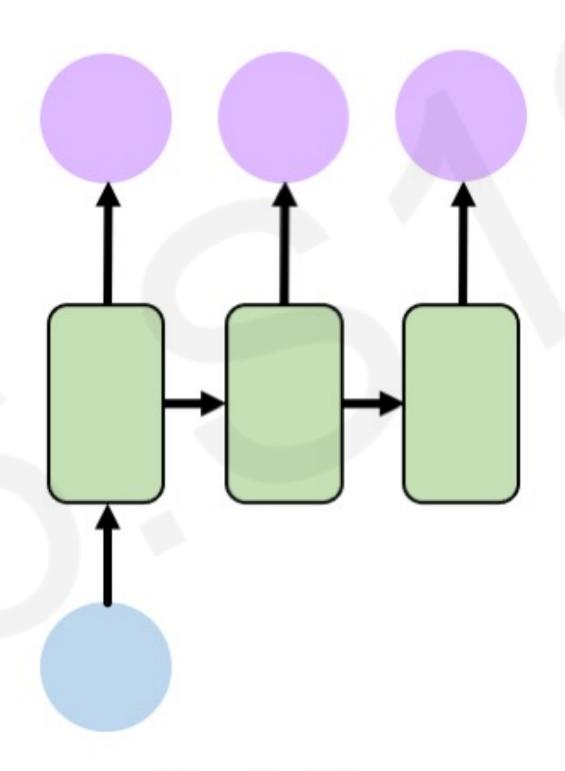
RNNs for Sequence Modeling



One to One "Vanilla" NN Binary classification

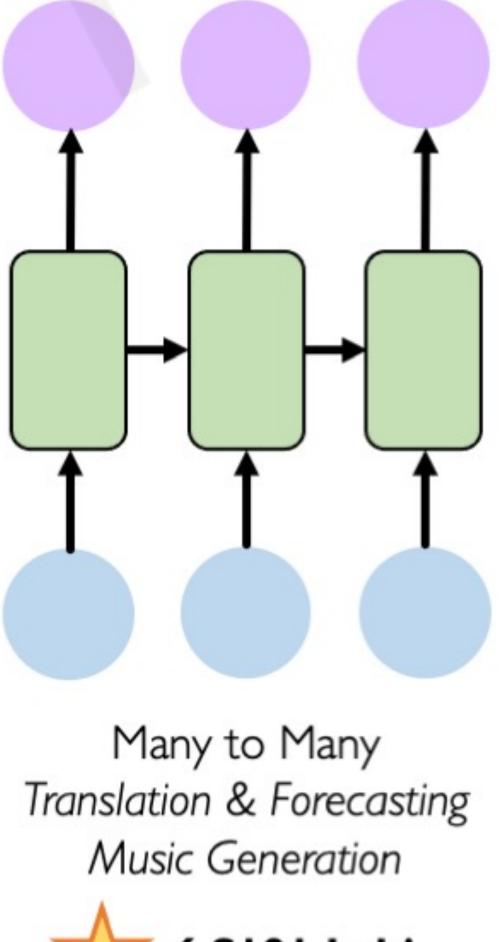
Many to One Sentiment Classification

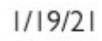
... and many other architectures and applications



One to Many Text Generation Image Captioning

6.S191 Introduction to Deep Learning @MITDeepLearning





Sequence Modeling: Design Criteria

To model sequences, we need to:

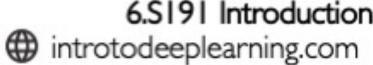
- Handle variable-length sequences
- 2. Track long-term dependencies
- Maintain information about order 3.
- Share parameters across the sequence 4.

Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

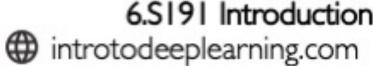
6.S191 Introduction to Deep Learning @MITDeepLearning

RNN

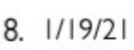
"This morning I took my cat for a walk."



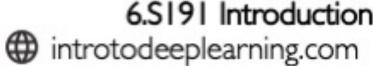
given these words

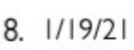


- "This morning I took my cat for a walk."



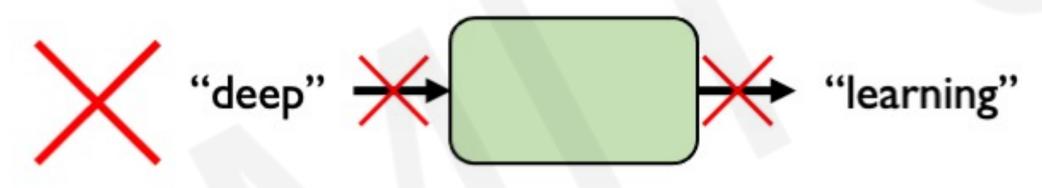
"This morning I took my cat for a walk." given these words predict the next word



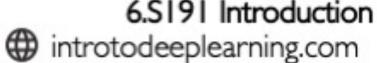


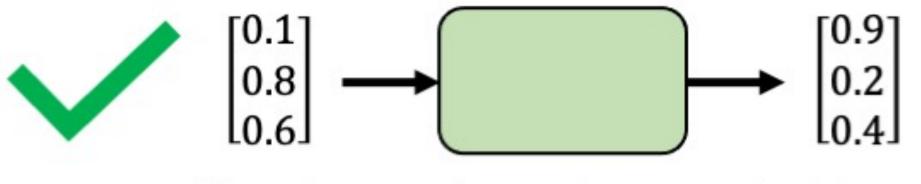
"This morning I took my cat for a walk." given these words predict the next word

Representing Language to a Neural Network



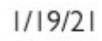
Neural networks cannot interpret words





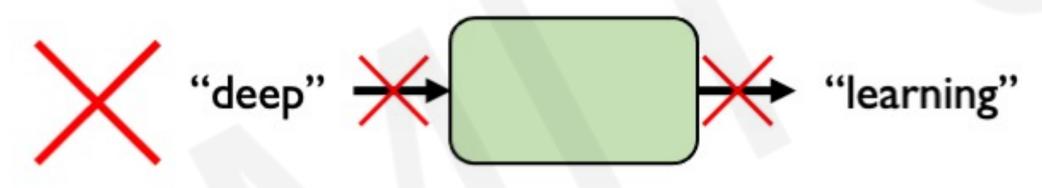
Neural networks require numerical inputs

6.S191 Introduction to Deep Learning MITDeepLearning

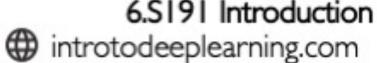


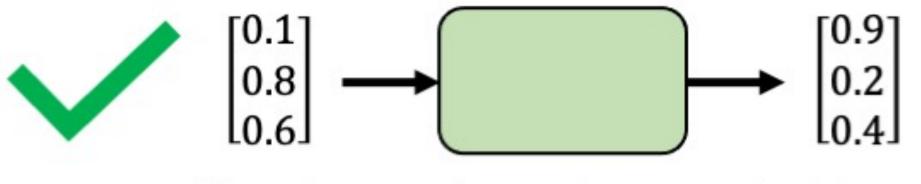
"This morning I took my cat for a walk." given these words predict the next word

Representing Language to a Neural Network



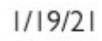
Neural networks cannot interpret words



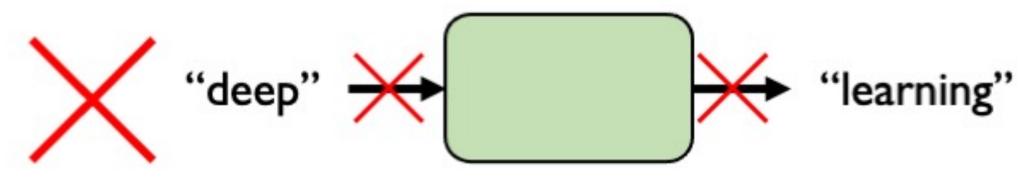


Neural networks require numerical inputs

6.S191 Introduction to Deep Learning MITDeepLearning

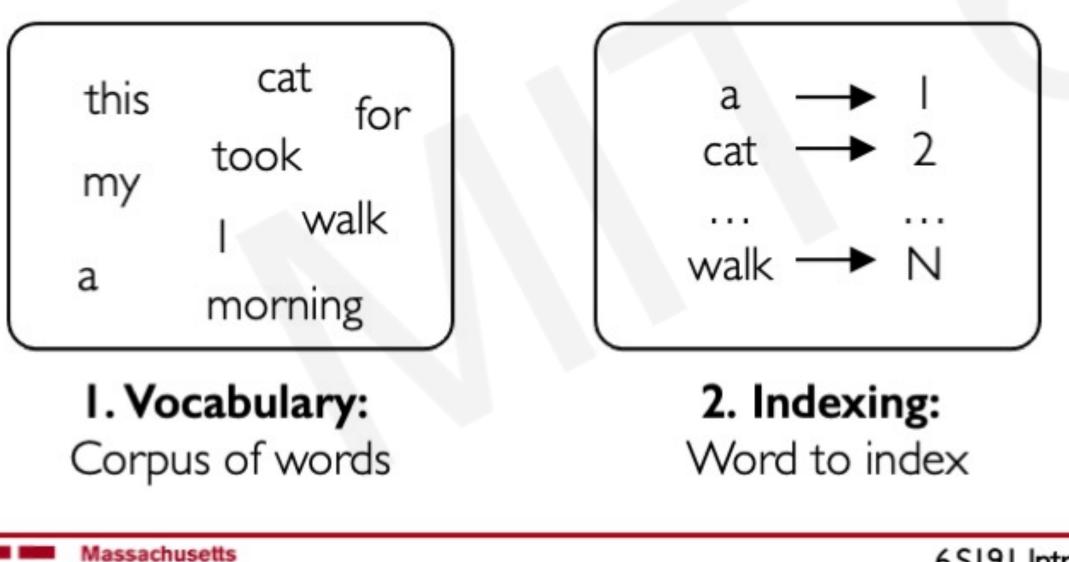


Encoding Language for a Neural Network



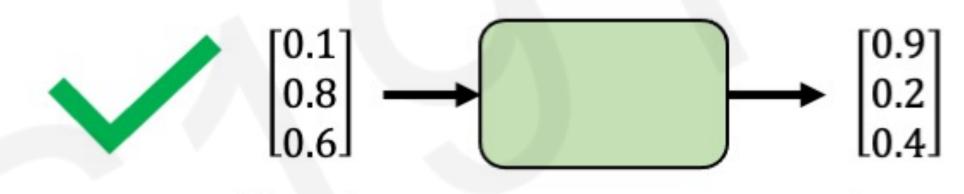
Neural networks cannot interpret words

Embedding: transform indexes into a vector of fixed size.

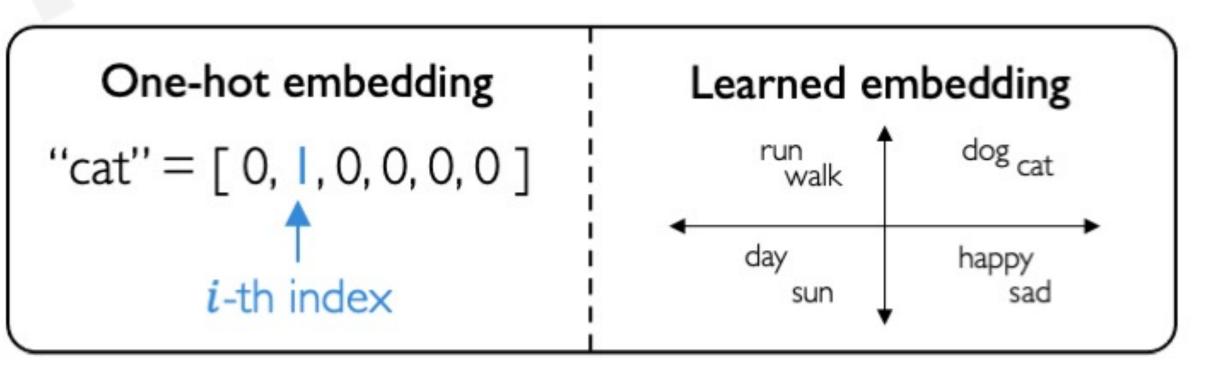


Institute of

Technology

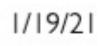


Neural networks require numerical inputs



3. Embedding:

Index to fixed-sized vector



Handle Variable Sequence Lengths

The food was great

We visited a restaurant for lunch

We were hungry but cleaned the house before eating

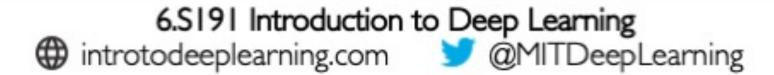
VS.

VS.

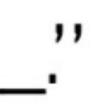
Model Long-Term Dependencies

"France is where I grew up, but I now live in Boston. I speak fluent _____."

We need information from the distant past to accurately predict the correct word.



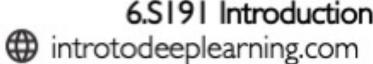
Massachusetts Institute of Technology



Capture Differences in Sequence Order

The food was good, not bad at all.

The food was bad, not good at all.



VS.

6.S191 Introduction to Deep Learning MITDeepLearning

H. Suresh, 6.S191 2018. 1/19/21

Sequence Modeling: Design Criteria

To model sequences, we need to:

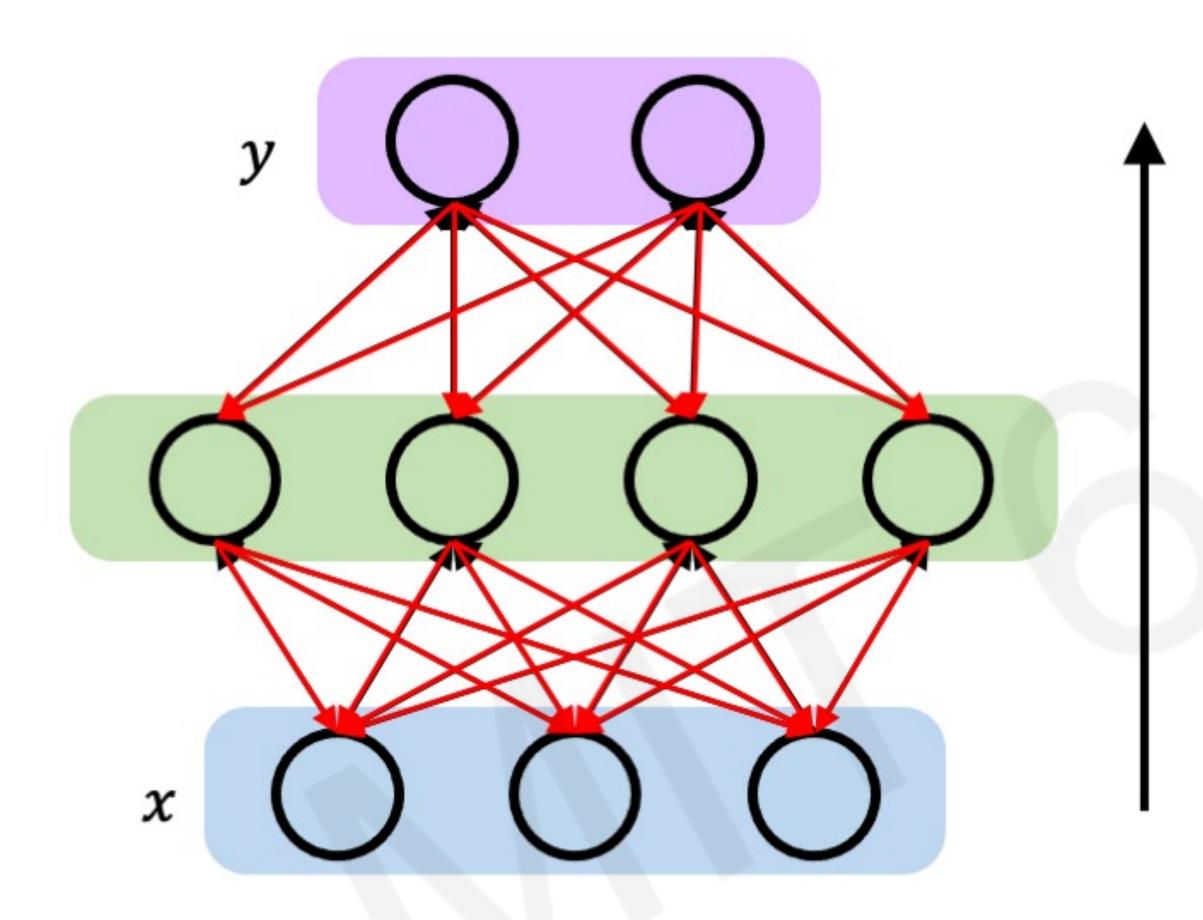
- Handle variable-length sequences
- 2. Track long-term dependencies
- Maintain information about order 3.
- Share parameters across the sequence 4.

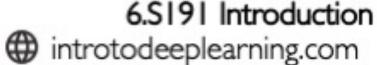
Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

6.S191 Introduction to Deep Learning @MITDeepLearning

RNN

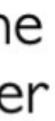
Recall: Backpropagation in Feed Forward Models



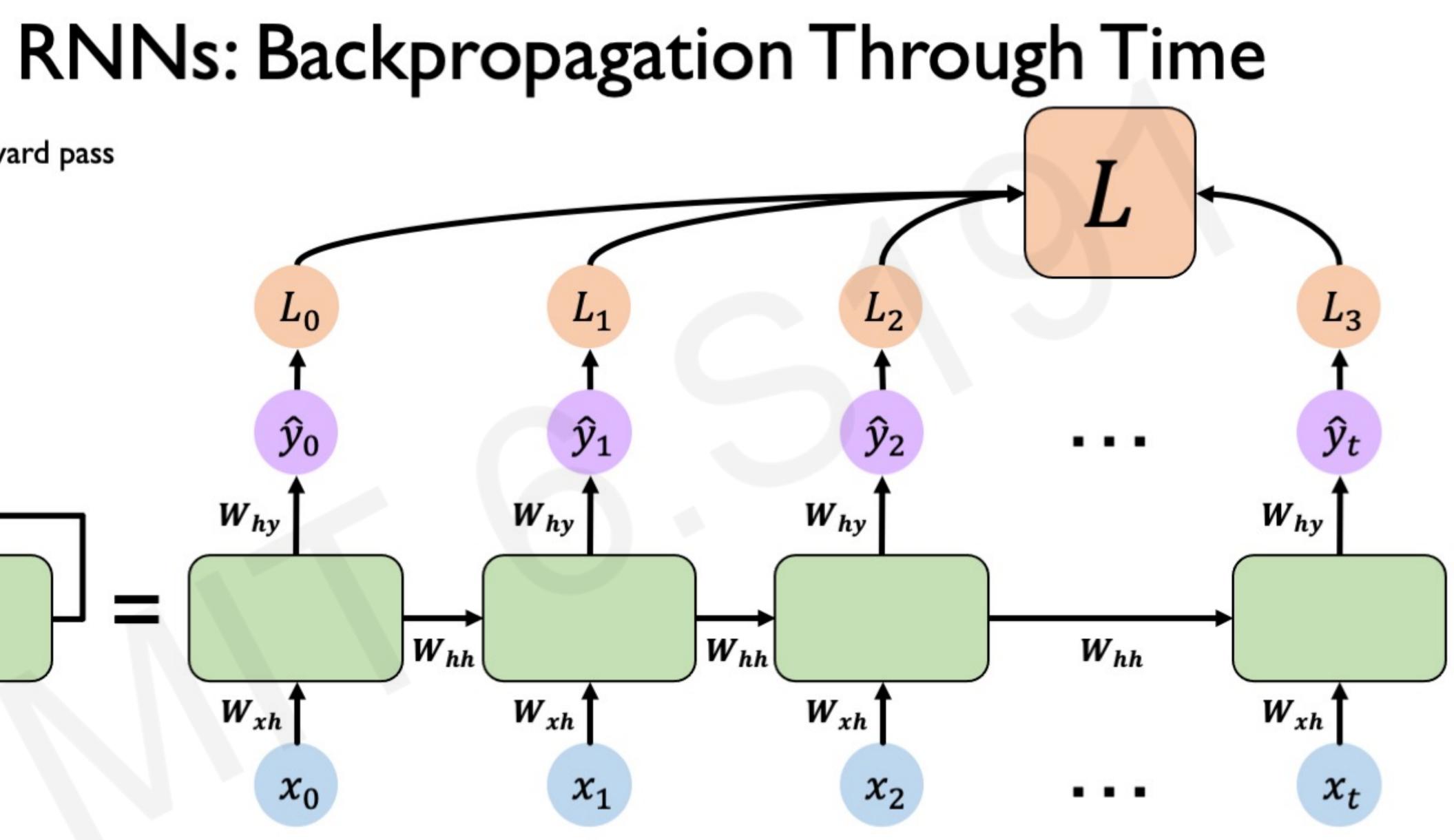


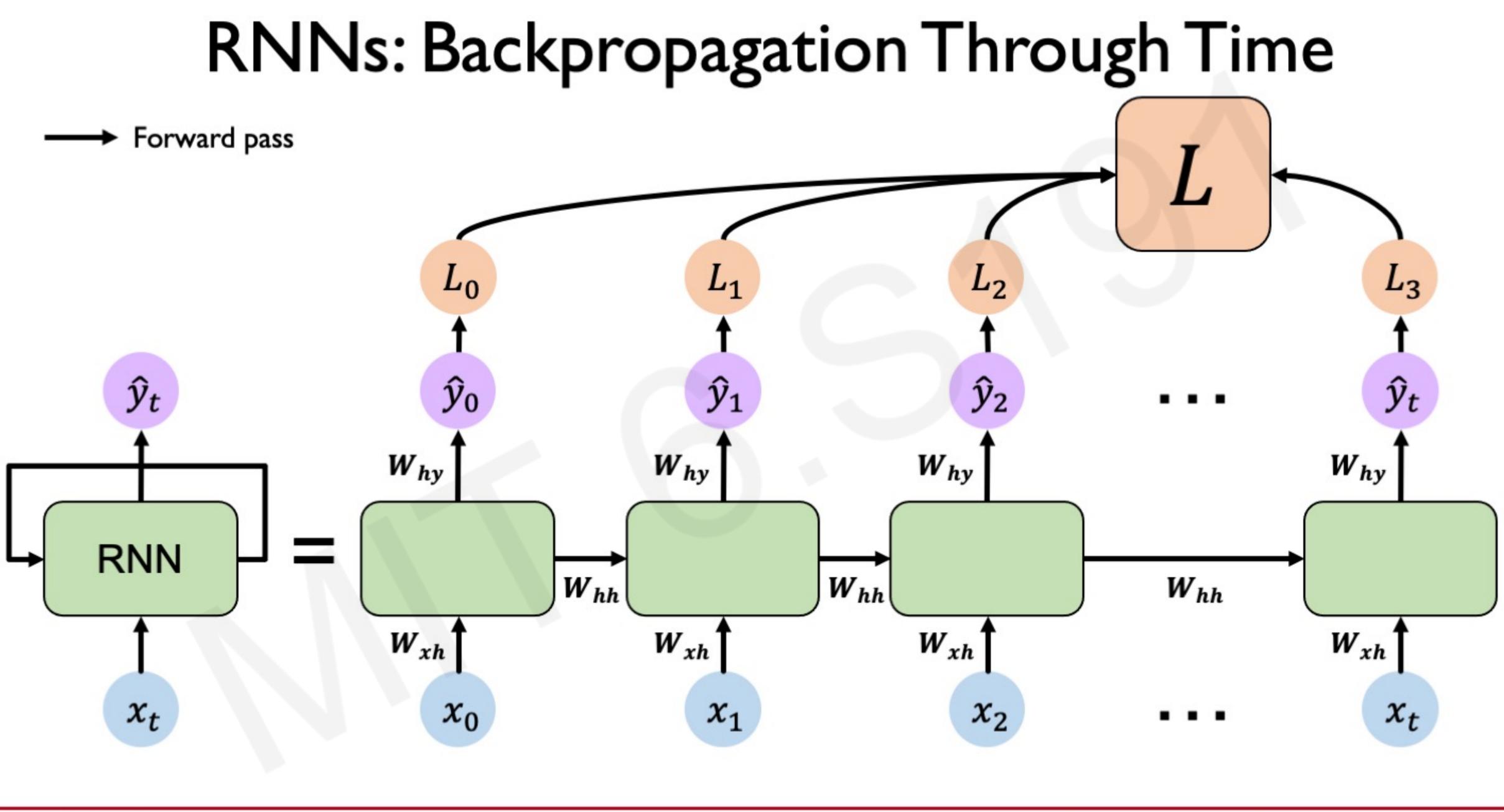
Backpropagation algorithm:

- Take the derivative (gradient) of the loss with respect to each parameter
- Shift parameters in order to 2. minimize loss







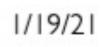


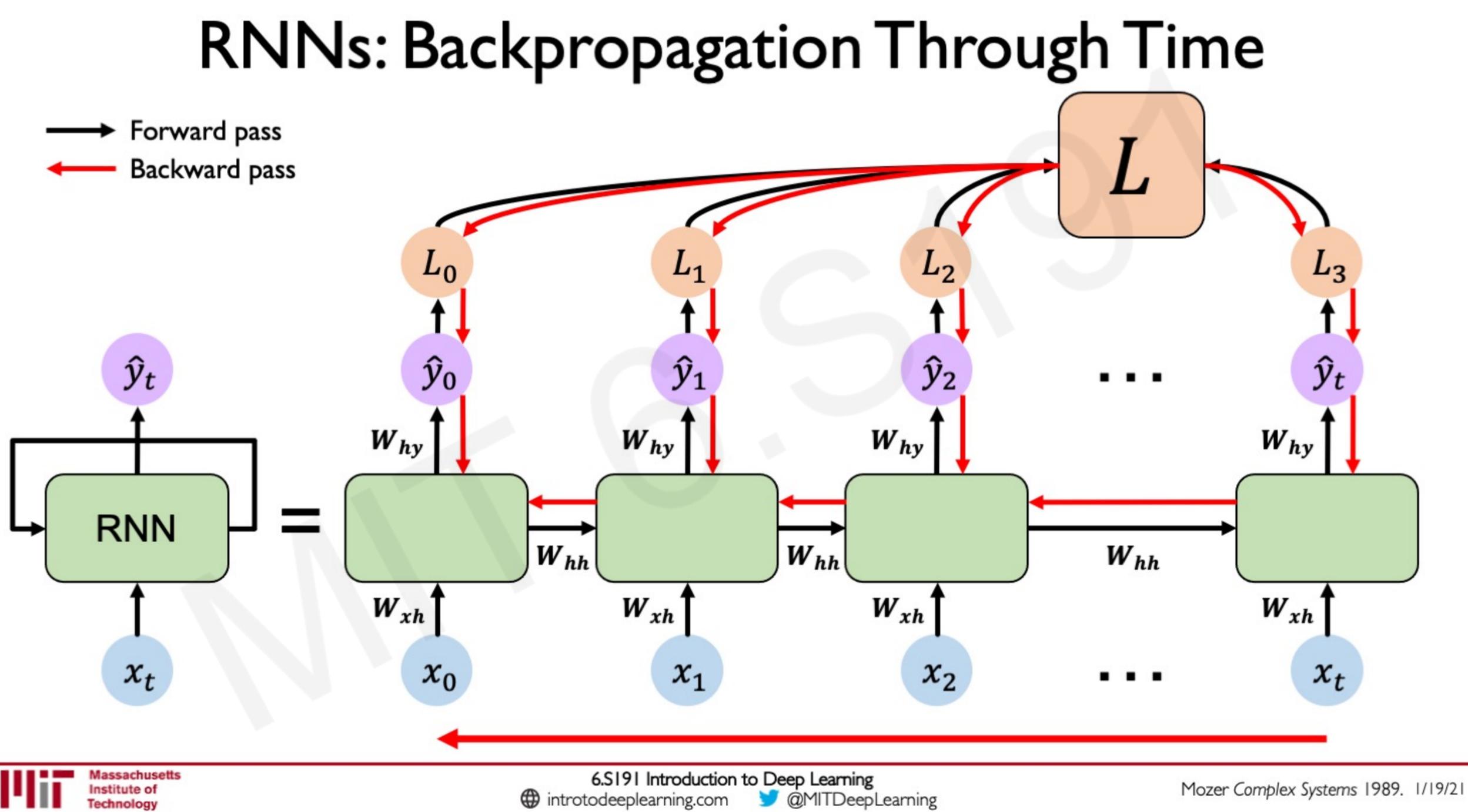
introtodeeplearning.com

Massachusetts

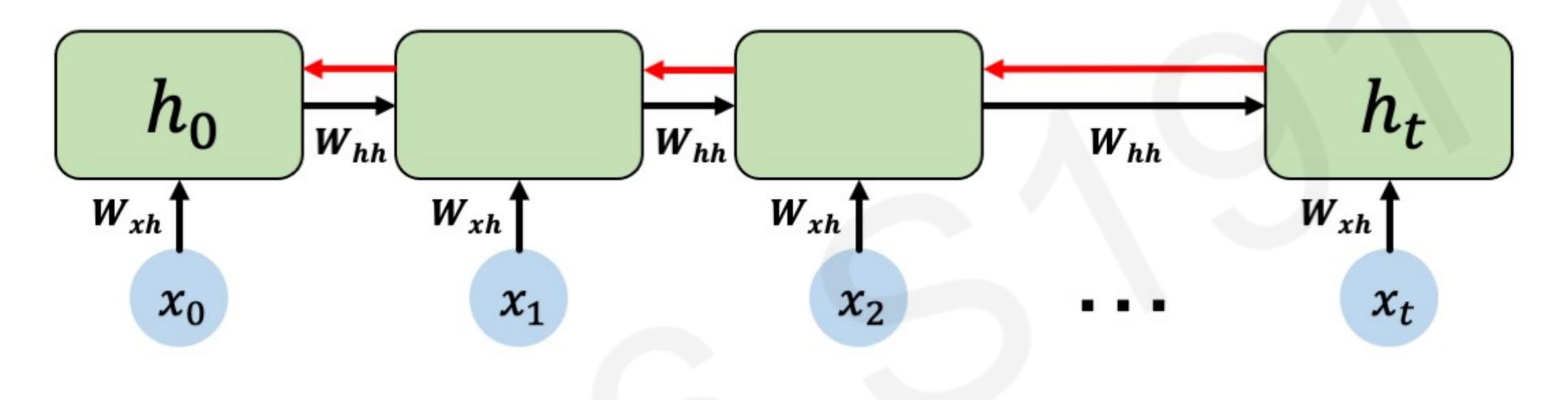
Institute of

Technology

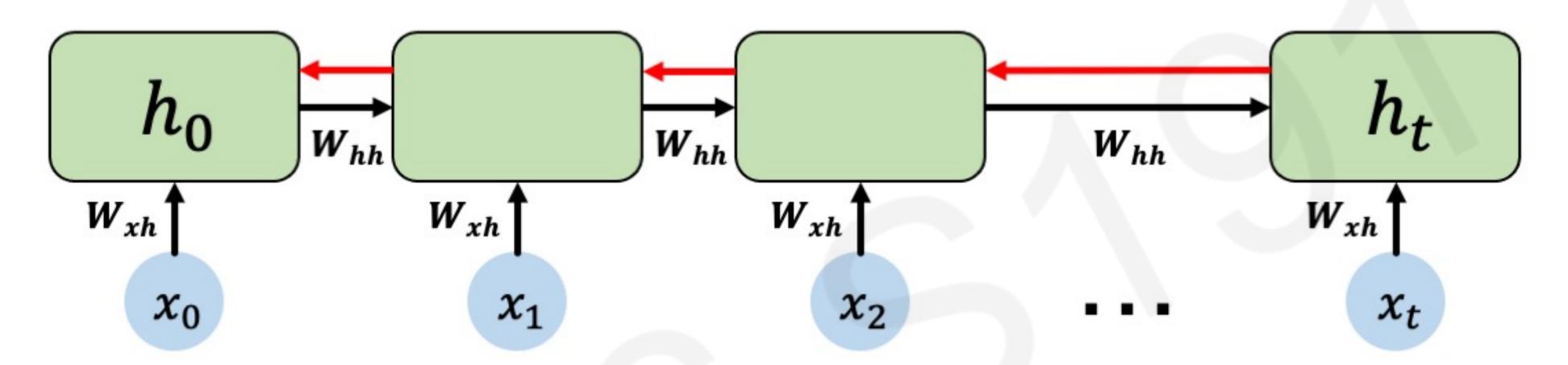




Standard RNN Gradient Flow

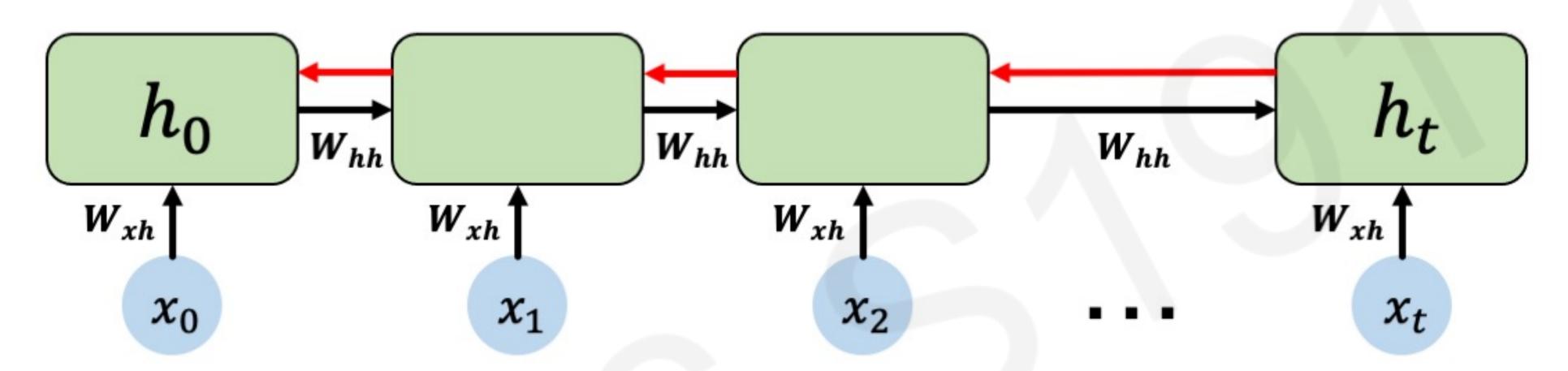


Standard RNN Gradient Flow

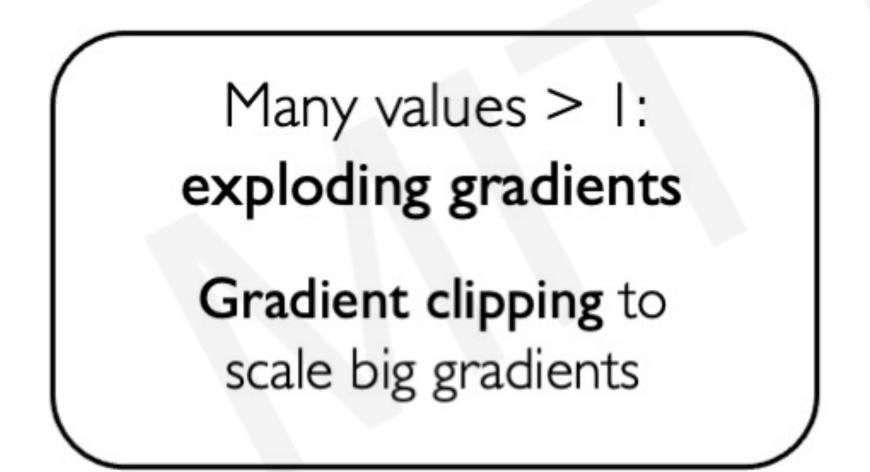


Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Standard RNN Gradient Flow: Exploding Gradients

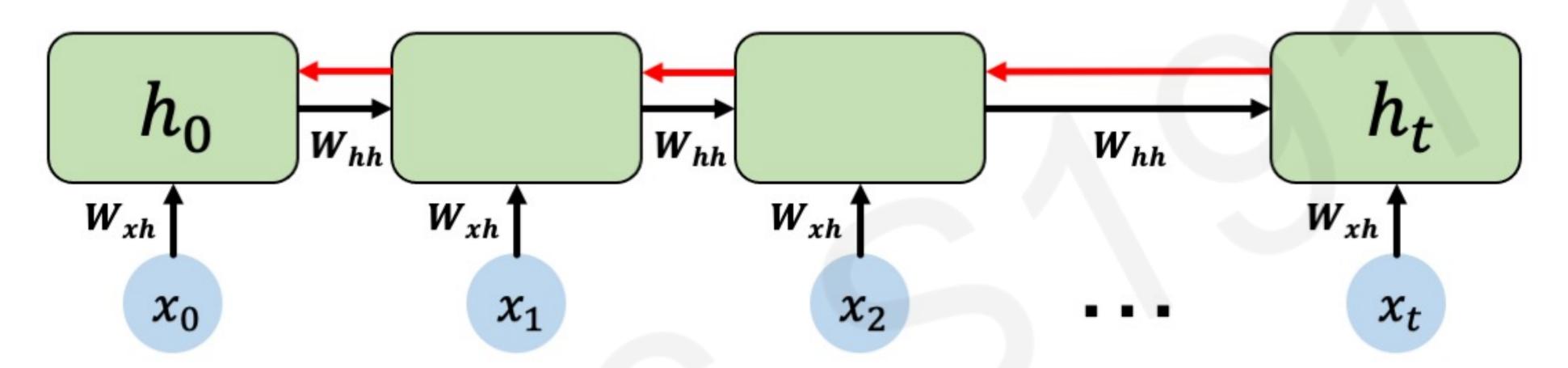


Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!



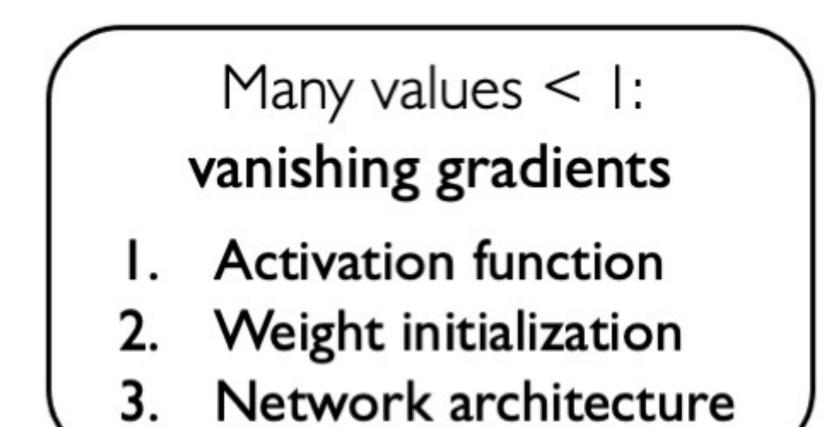
Massachusetts Institute of Technology

Standard RNN Gradient Flow: Vanishing Gradients



Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1: exploding gradients Gradient clipping to scale big gradients

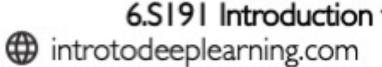


6.S191 Introduction to Deep Learning introtodeeplearning.com

Why are vanishing gradients a problem?

Why are vanishing gradients a problem?

Multiply many small numbers together



Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

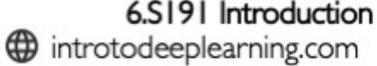


Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

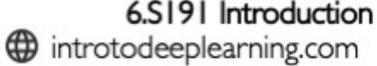


Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies



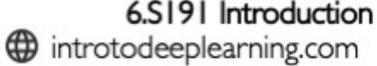
"The clouds are in the ____"

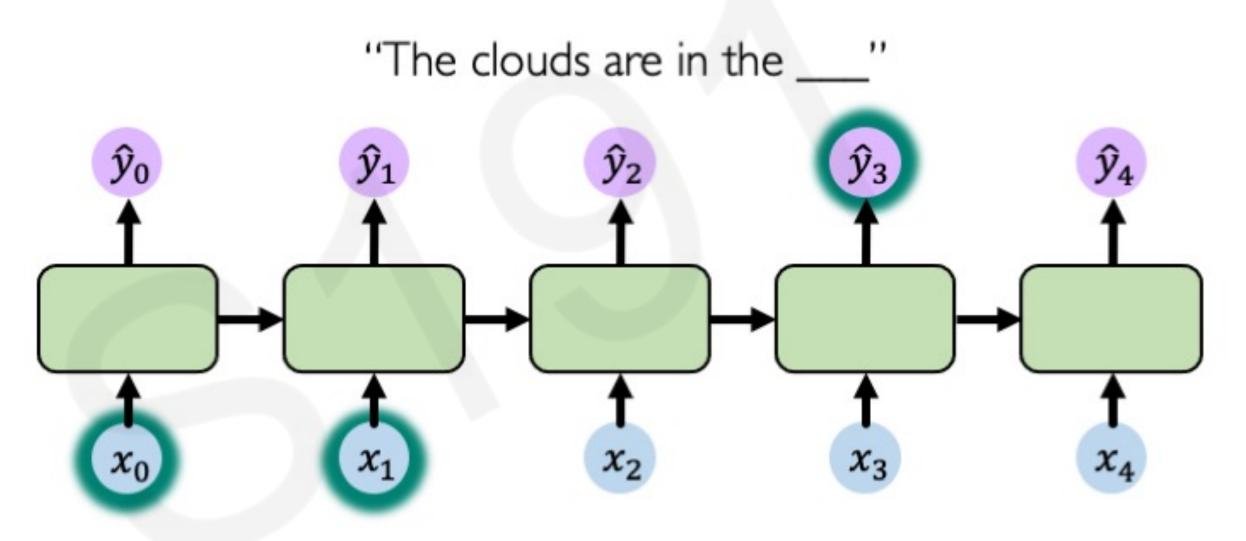
Why are vanishing gradients a problem?

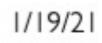
Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies





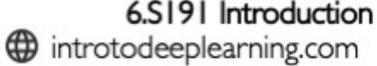


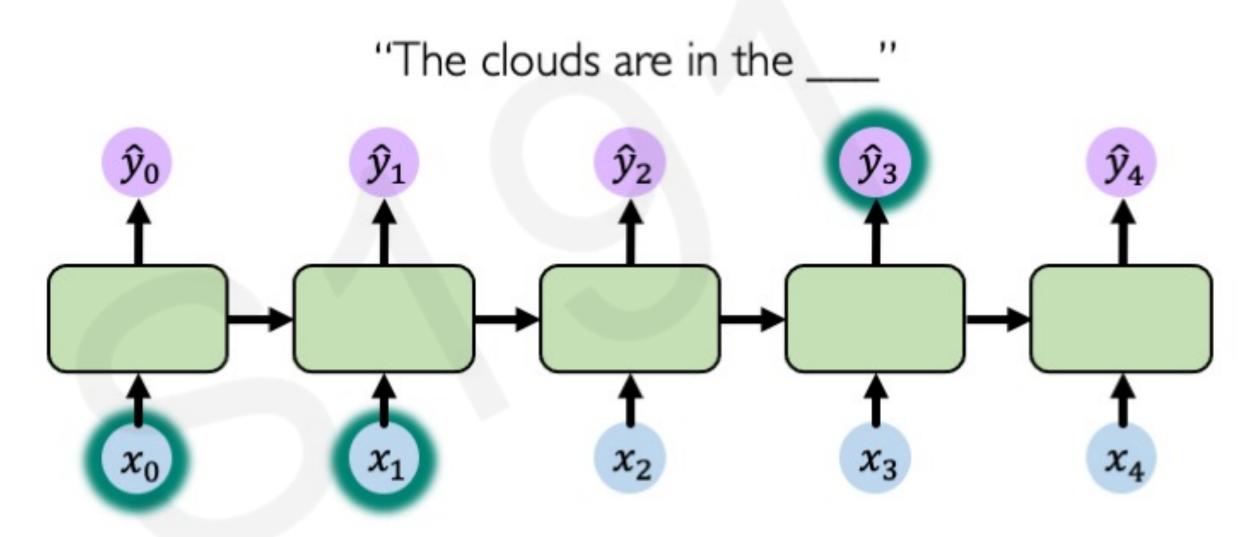
Why are vanishing gradients a problem?

Multiply many small numbers together

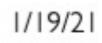
Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies





"I grew up in France, ... and I speak fluent____"

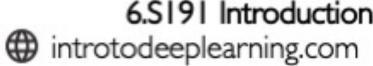


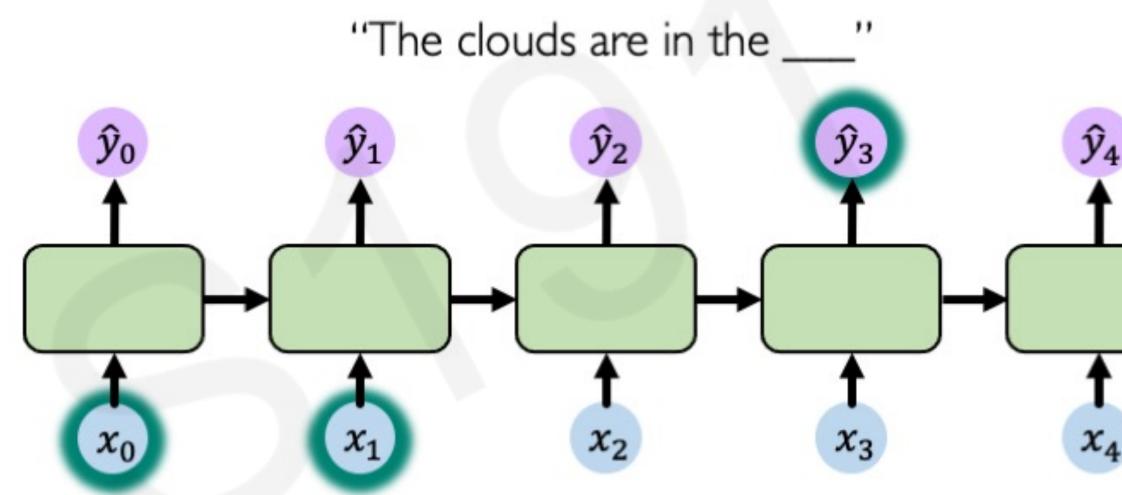
Why are vanishing gradients a problem?

Multiply many small numbers together

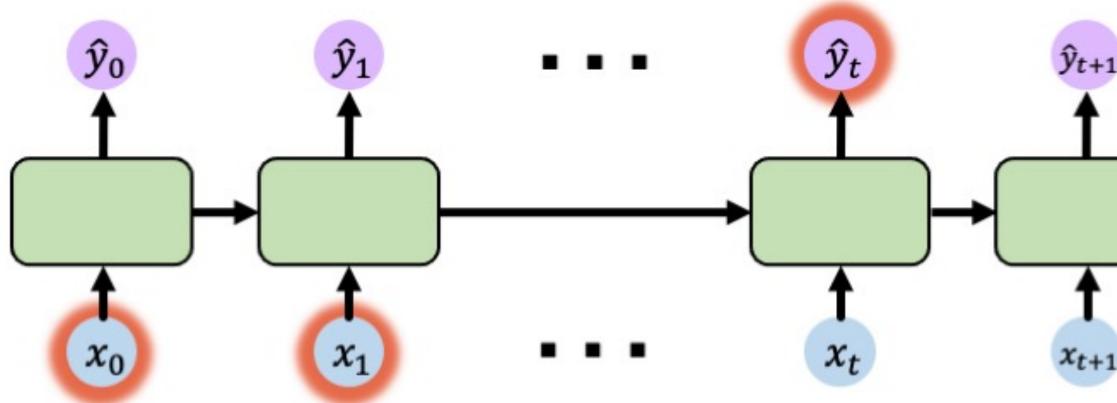
Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies



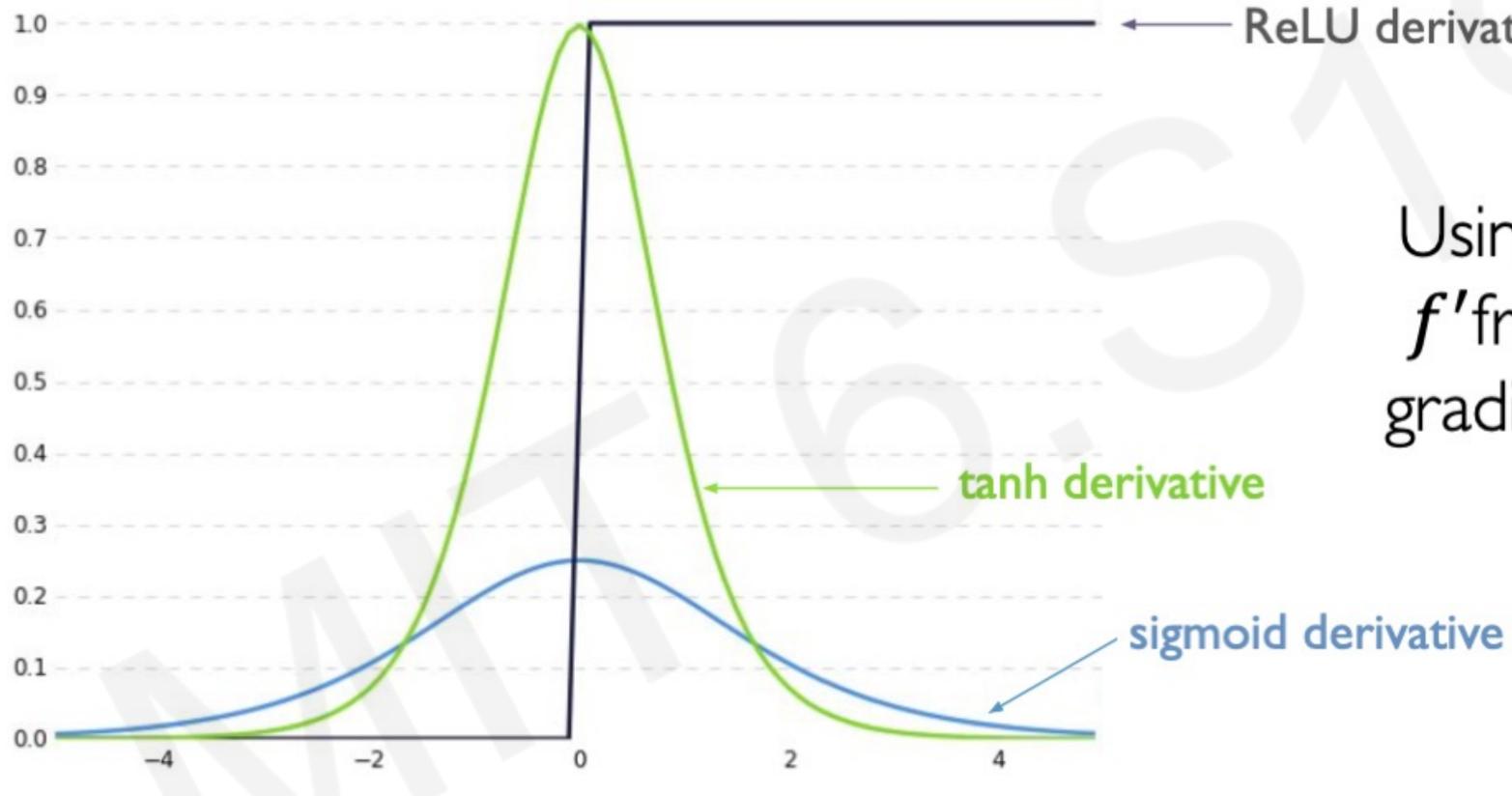


"I grew up in France, ... and I speak fluent____"



6.S191 Introduction to Deep Learning MITDeepLearning

Trick #1: Activation Functions



6.S191 Introduction to Deep Learning MITDeepLearning introtodeeplearning.com

ReLU derivative

Using ReLU prevents f' from shrinking the gradients when x > 0

H. Suresh, 6.S191 2018. 1/19/21

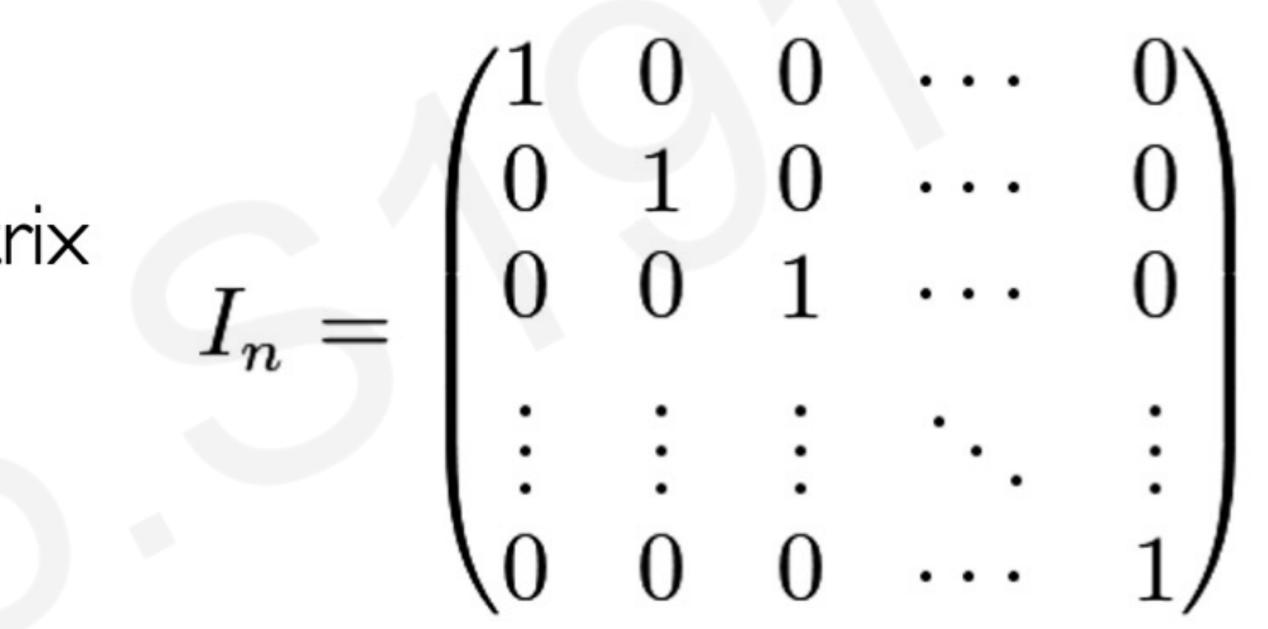
Trick #2: Parameter Initialization

SKIP

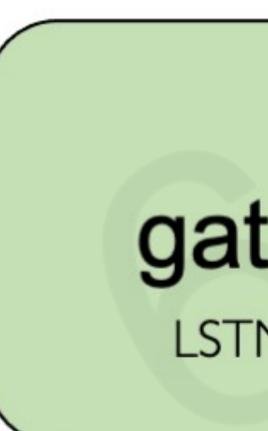
Initialize weights to identity matrix

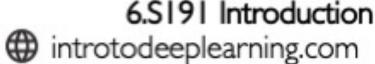
Initialize **biases** to zero

This helps prevent the weights from shrinking to zero.



Solution #3: Gated Cells





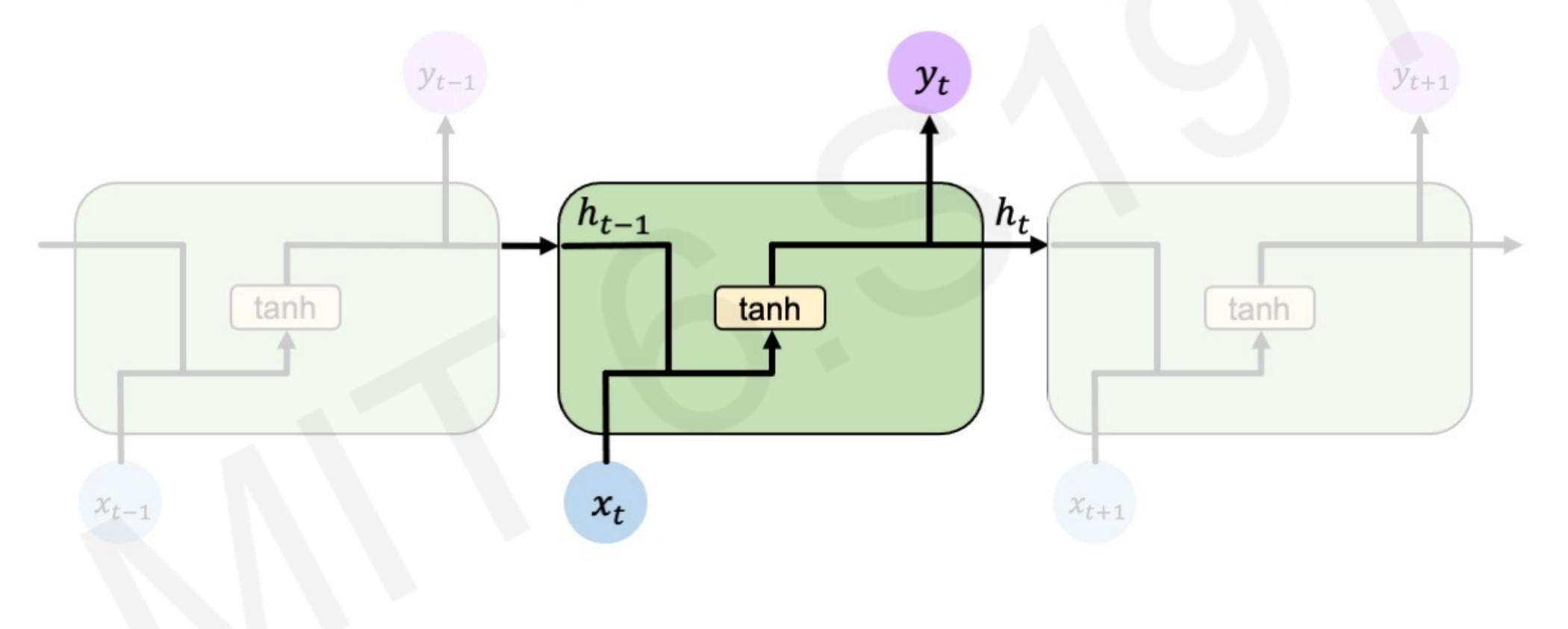
Idea: use a more complex recurrent unit with gates to control what information is passed through

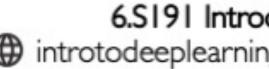
gated cell LSTM, GRU, etc.

Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

Standard RNN

In a standard RNN, repeating modules contain a simple computation node



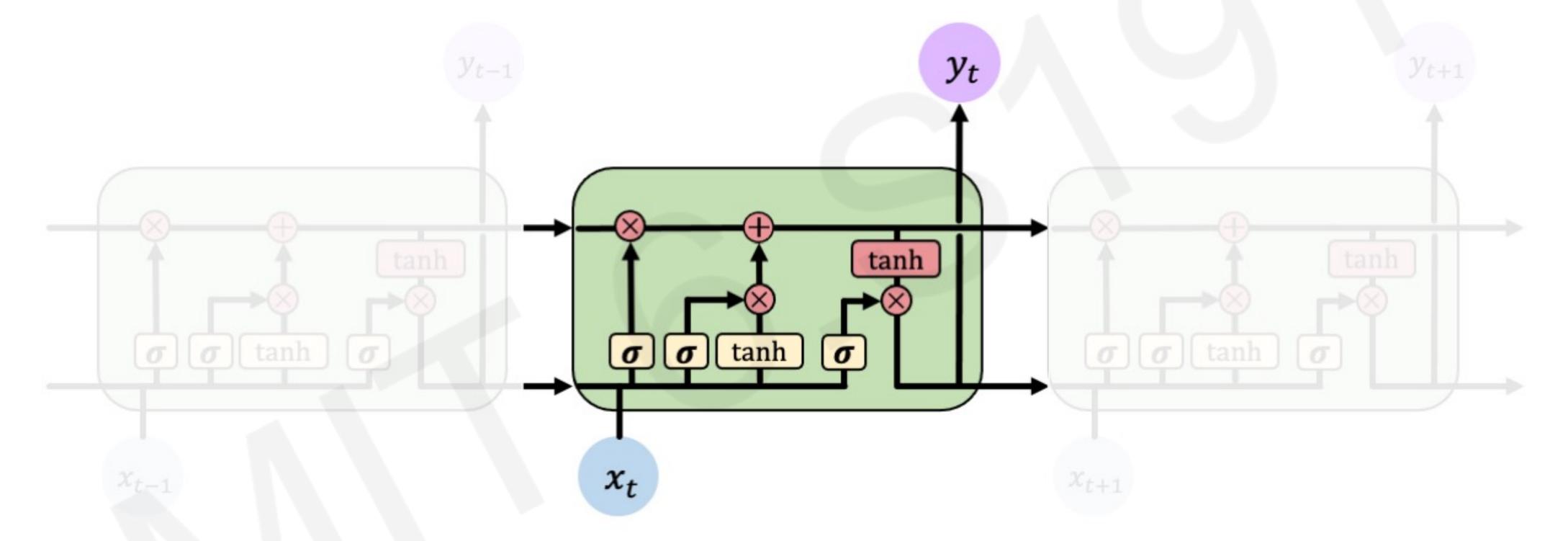


Long Short Term Memory (LSTMs)

Massachusetts

Institute of

Technology



_STM cells are able to track information throughout many timesteps

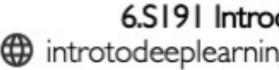
6.S191 Introduction to Deep Learning introtodeeplearning.com @MITDeepLearning

LSTM modules contain computational blocks that control information flow

tf.keras.layers.LSTM(num units)

Hochreiter & Schmidhuber, Neural Computation 1997. 1/19/21

Long Short Term Memory (LSTMs)

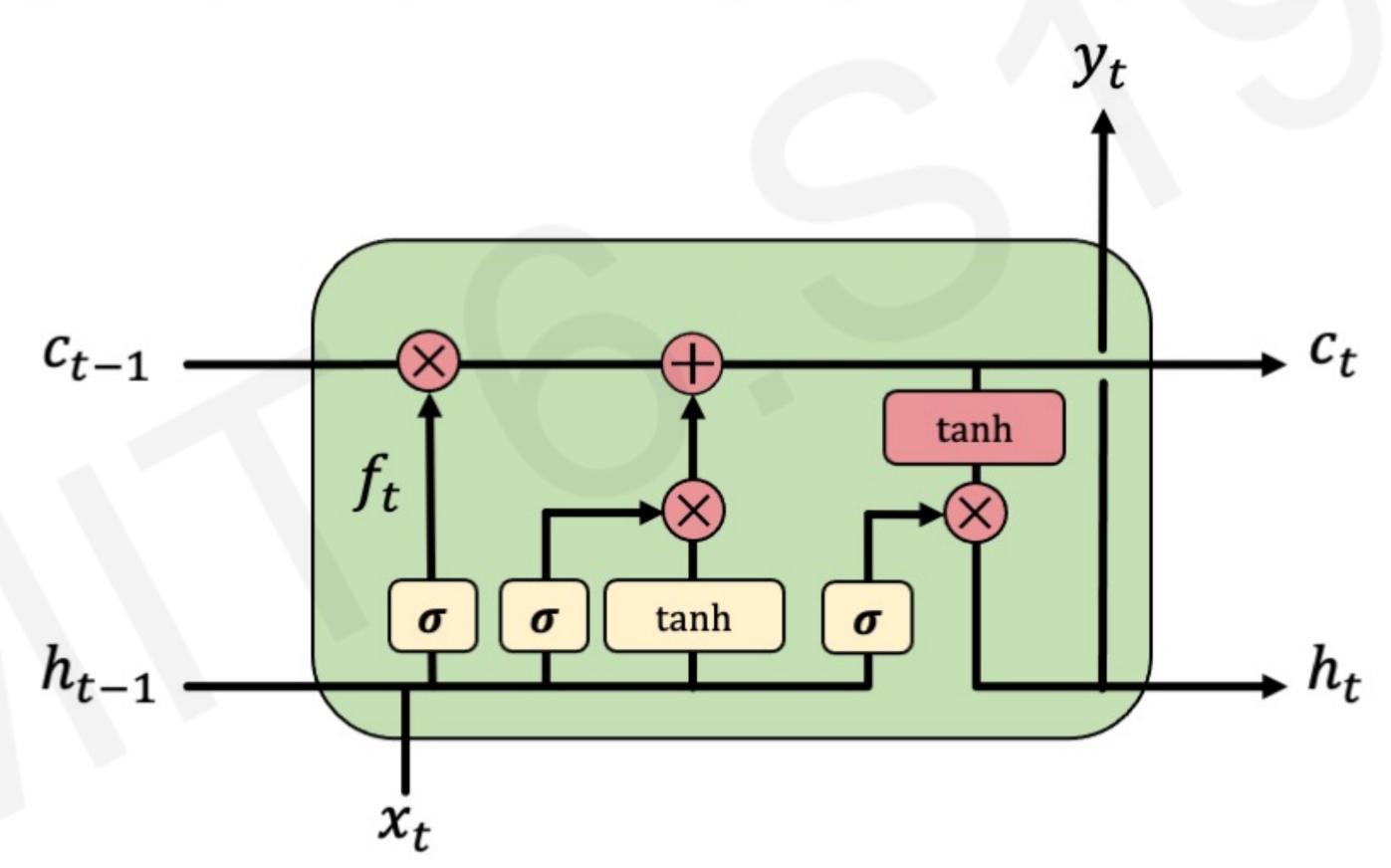


Massachusetts Institute of Technology

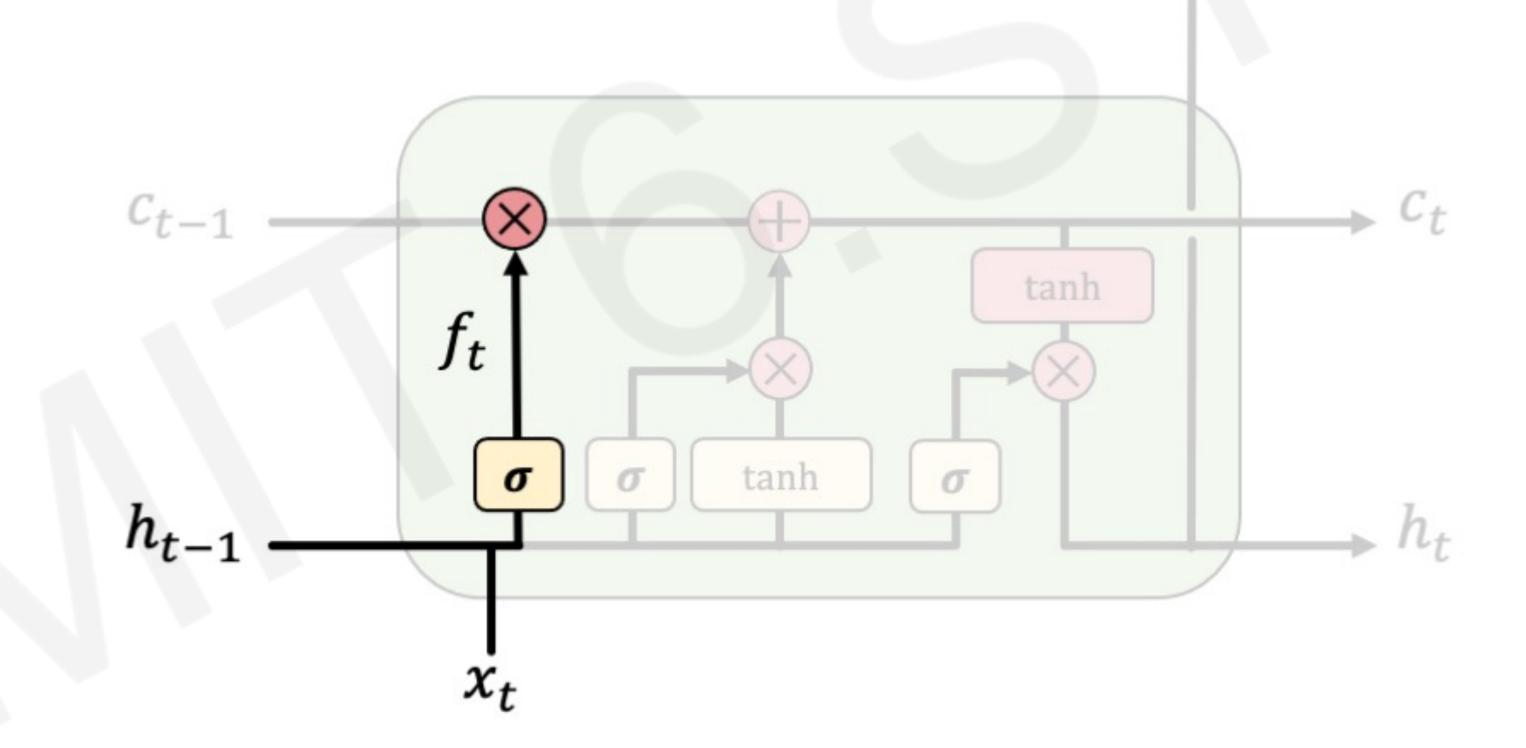
Information is added or removed through structures called gates

Gates optionally let information through, for example via a sigmoid neural net layer and pointwise multiplication

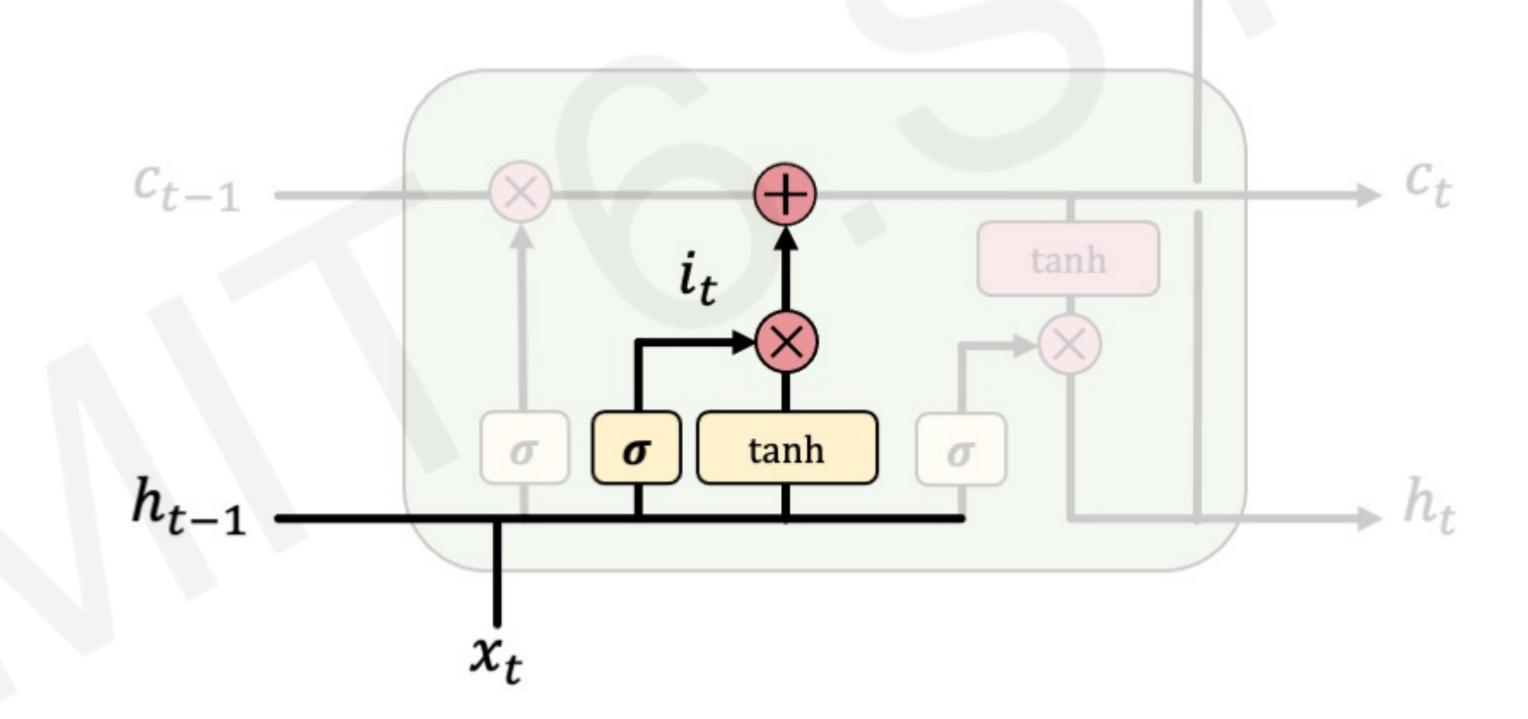
Long Short Term Memory (LSTMs) How do LSTMs work? I) Forget 2) Store 3) Update 4) Output



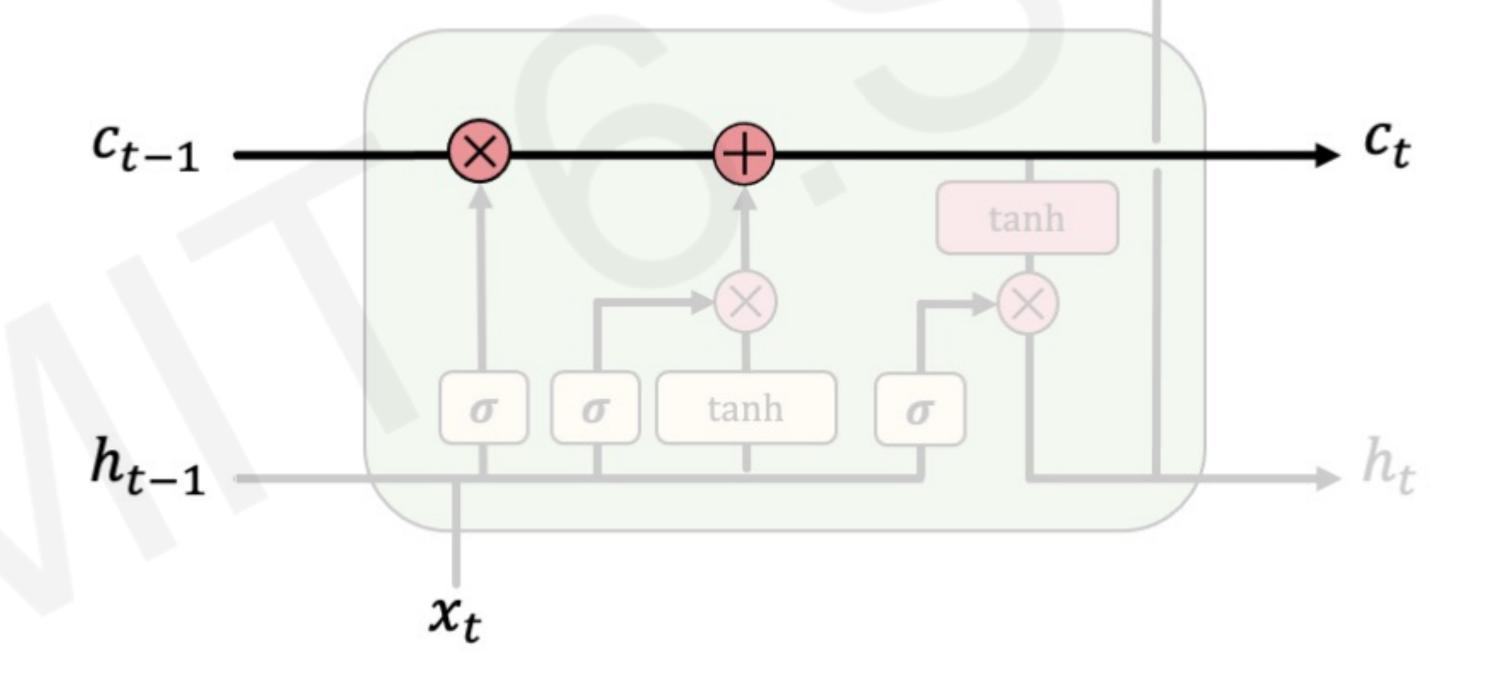
Long Short Term Memory (LSTMs) 1) Forget 2) Store 3) Update 4) Output LSTMs forget irrelevant parts of the previous state



Long Short Term Memory (LSTMs) 1) Forget 2) Store 3) Update 4) Output LSTMs store relevant new information into the cell state



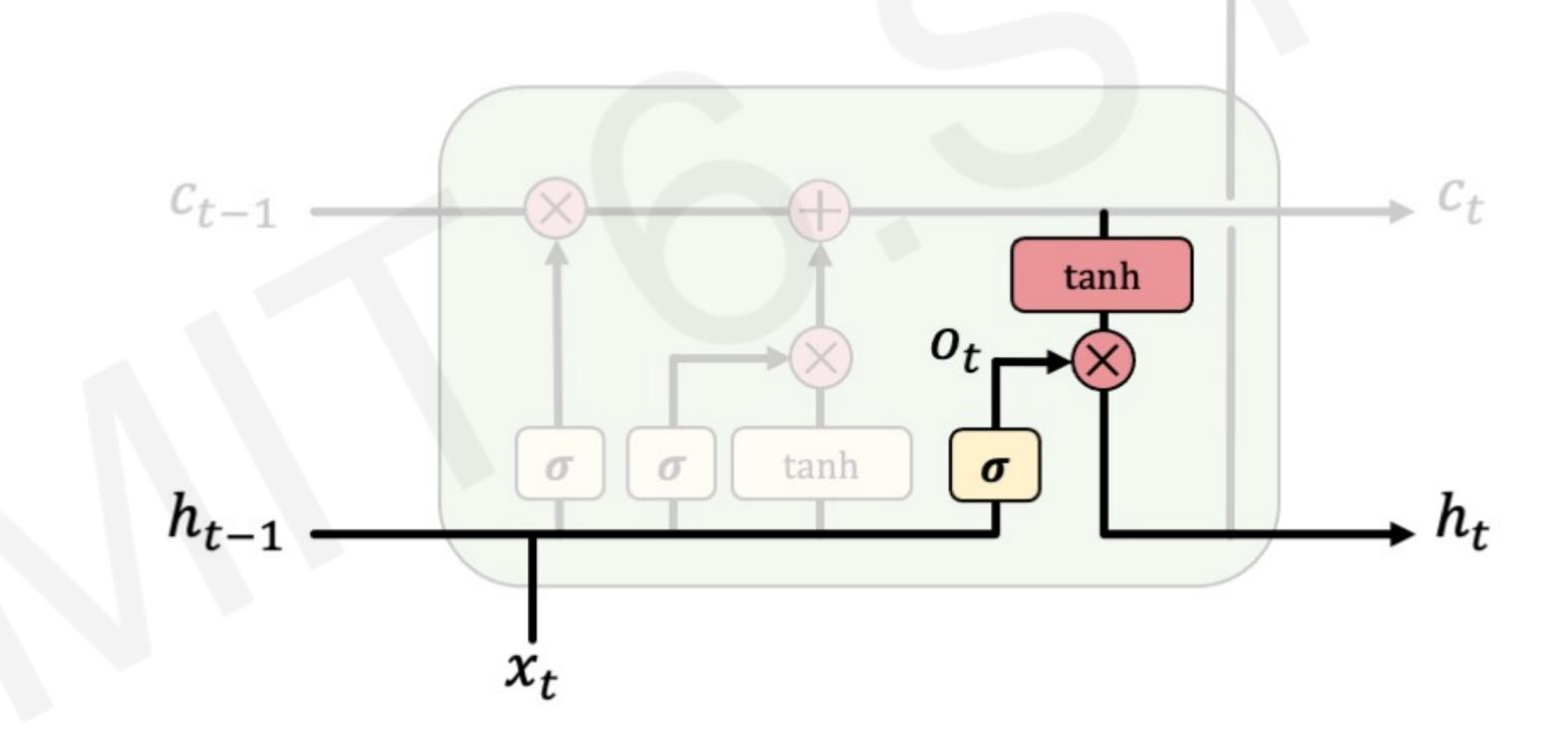
Long Short Term Memory (LSTMs) 1) Forget 2) Store 3) Update 4) Output LSTMs selectively update cell state values



introtodeeplearning.com

Olah, "Understanding LSTMs". 1/19/21

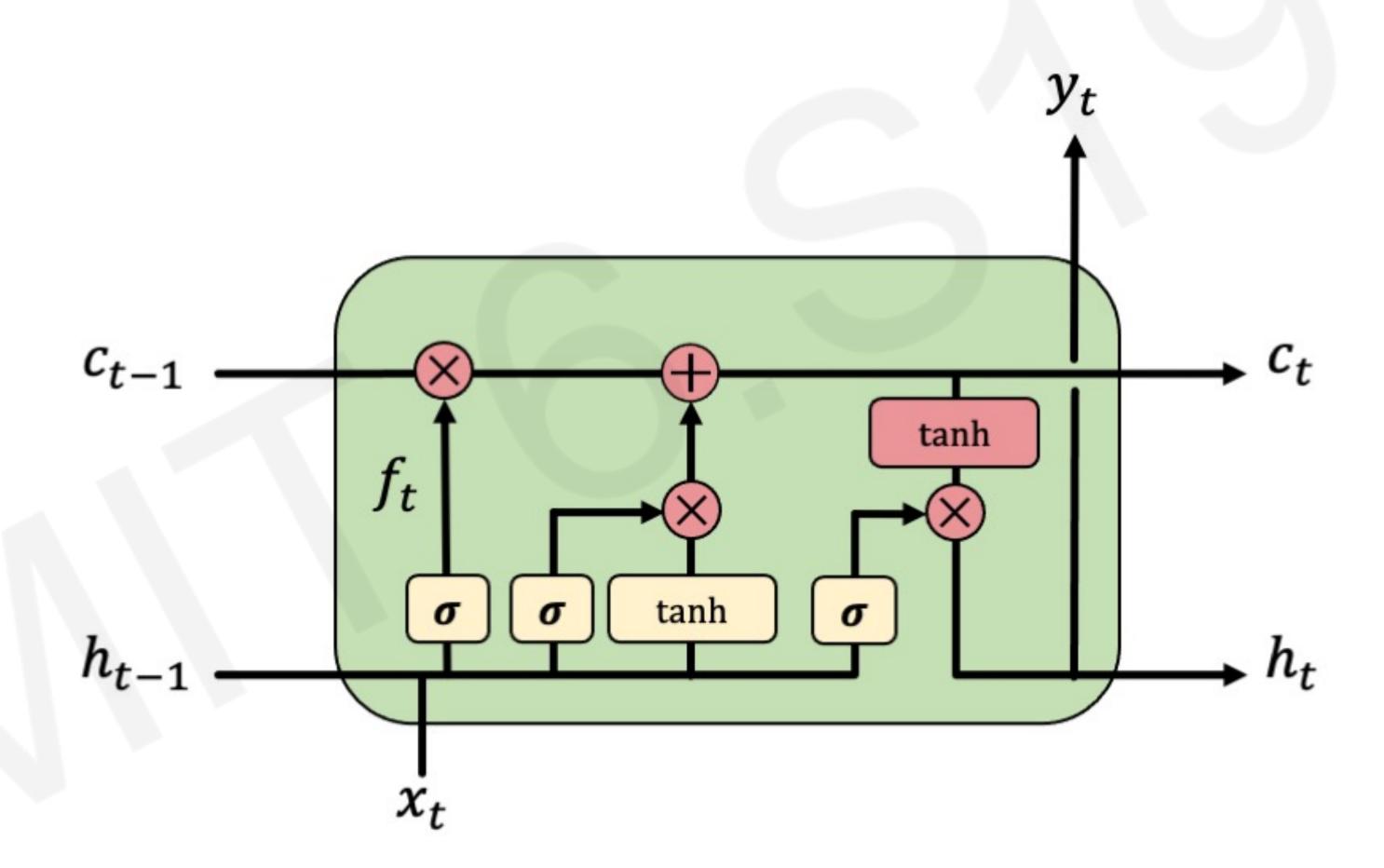
Long Short Term Memory (LSTMs) 1) Forget 2) Store 3) Update 4) Output The output gate controls what information is sent to the next time step



introtodeeplearning.com

 y_t

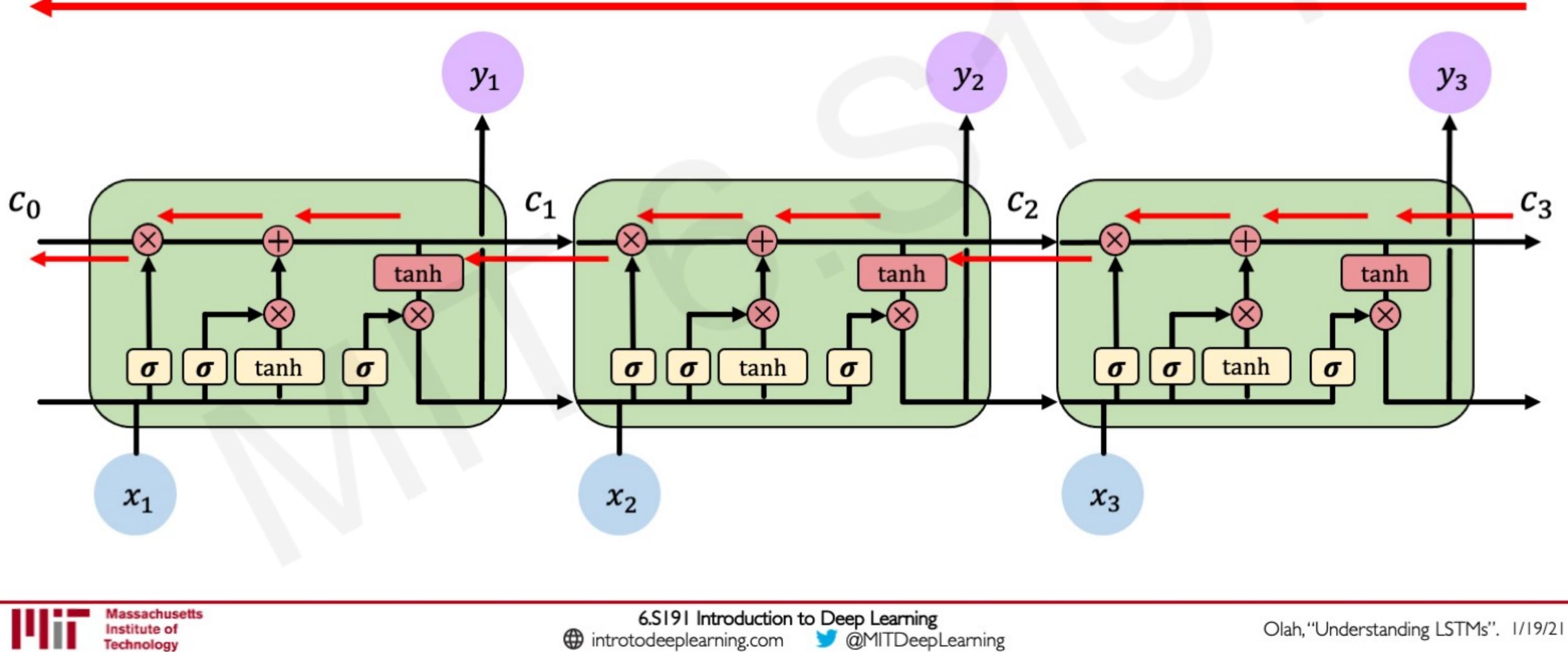
Long Short Term Memory (LSTMs) I) Forget 2) Store 3) Update 4) Output



introtodeeplearning.com

LSTM Gradient Flow

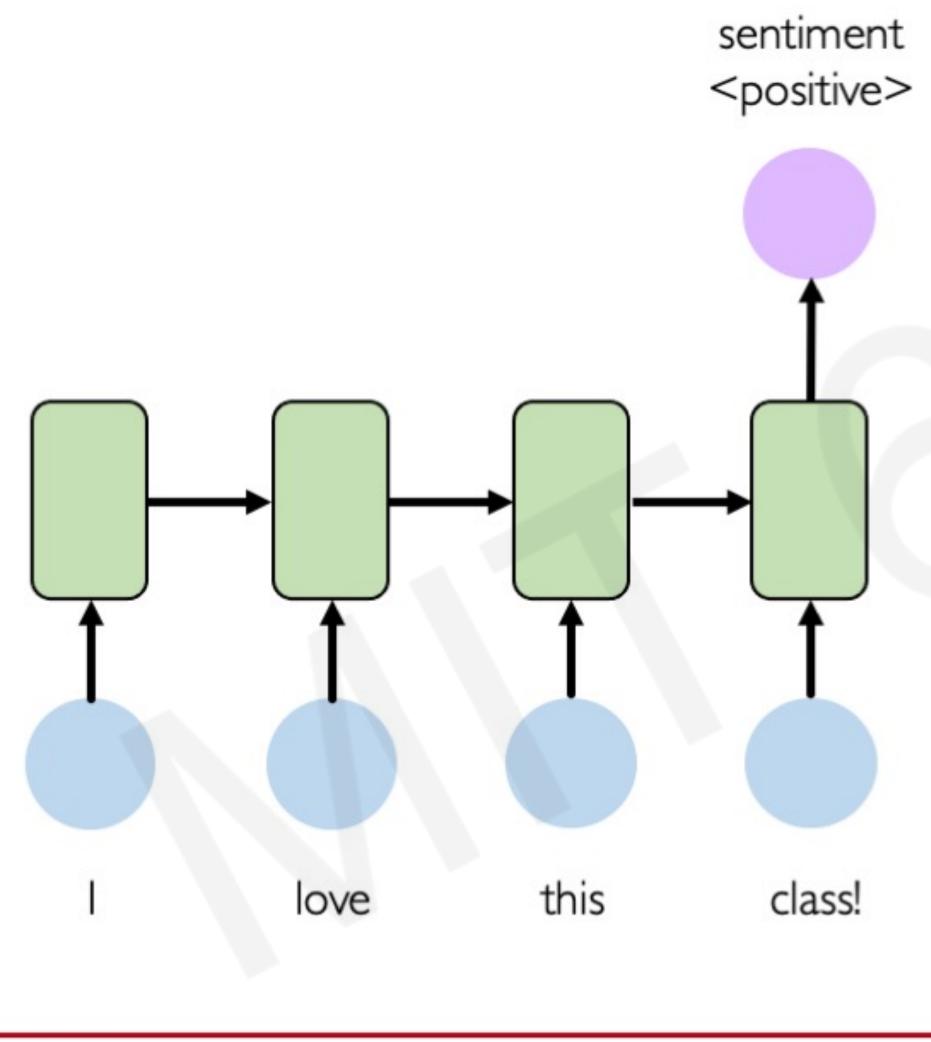
Uninterrupted gradient flow!



LSTMs: Key Concepts

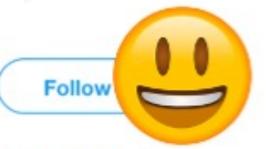
- Maintain a separate cell state from what is outputted
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Store relevant information from current input
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- Backpropagation through time with uninterrupted gradient flow 3.

Example Task: Sentiment Classification



Tweet sentiment classification

Ivar Hagendoorn @lvarHagendoorn



The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online introtodeeplearning.com

12:45 PM - 12 Feb 2018

Replying to @Kazuki2048

I wouldn't mind a bit of snow right now. We haven't had any in my bit of the Midlands this winter! :(

2:19 AM - 25 Jan 2019

6.S191 Introduction to Deep Learning @MITDeepLearning



Example Task: Sentiment Classification

inputs = keras.Input(shape=(None,), dtype="int3 x = layers.Embedding(max_features, 16)(inputs) x = layers.LSTM(16)(x) # Add a 16-node LSTM that outputs = layers.Dense(1, activation="sigmoid" model = keras.Model(inputs, outputs) # define model.summary()

Model: "model"

Layer (type)	Output Shape
<pre>input_3 (InputLayer)</pre>	[(None, None)]
embedding_1 (Embedding)	(None, None, 16)
lstm_1 (LSTM)	(None, 16)
dense_1 (Dense)	(None, 1)
Total params: 82,129 Trainable params: 82,129 Non-trainable params: 0	
love this	class!

at acts on the outpu	
	is id
Param #	i d
0	
80000	
2112	\frown
17	
	-
	е

2:19 AM - 25 Jan 2019

6.S191 Introduction to Deep Learning MITDeepLearning this

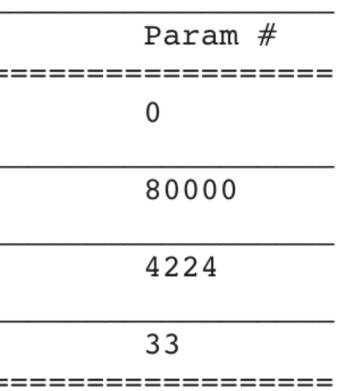
Example Task: Sentiment Classification

inputs = keras.Input(shape=(None,), dtype="int32") model = keras.Model(inputs, outputs) # define the model as inputs -> outputs model.summary()

Model: "model 1"

Layer (type)	Output Shape
input_4 (InputLayer)	[(None, None)]
embedding_2 (Embedding)	(None, None, 16)
bidirectional (Bidirectional	(None, 32)
dense_2 (Dense) ====================================	(None, 1)
Total params: 84,257 Trainable params: 84,257 Non-trainable params: 0	

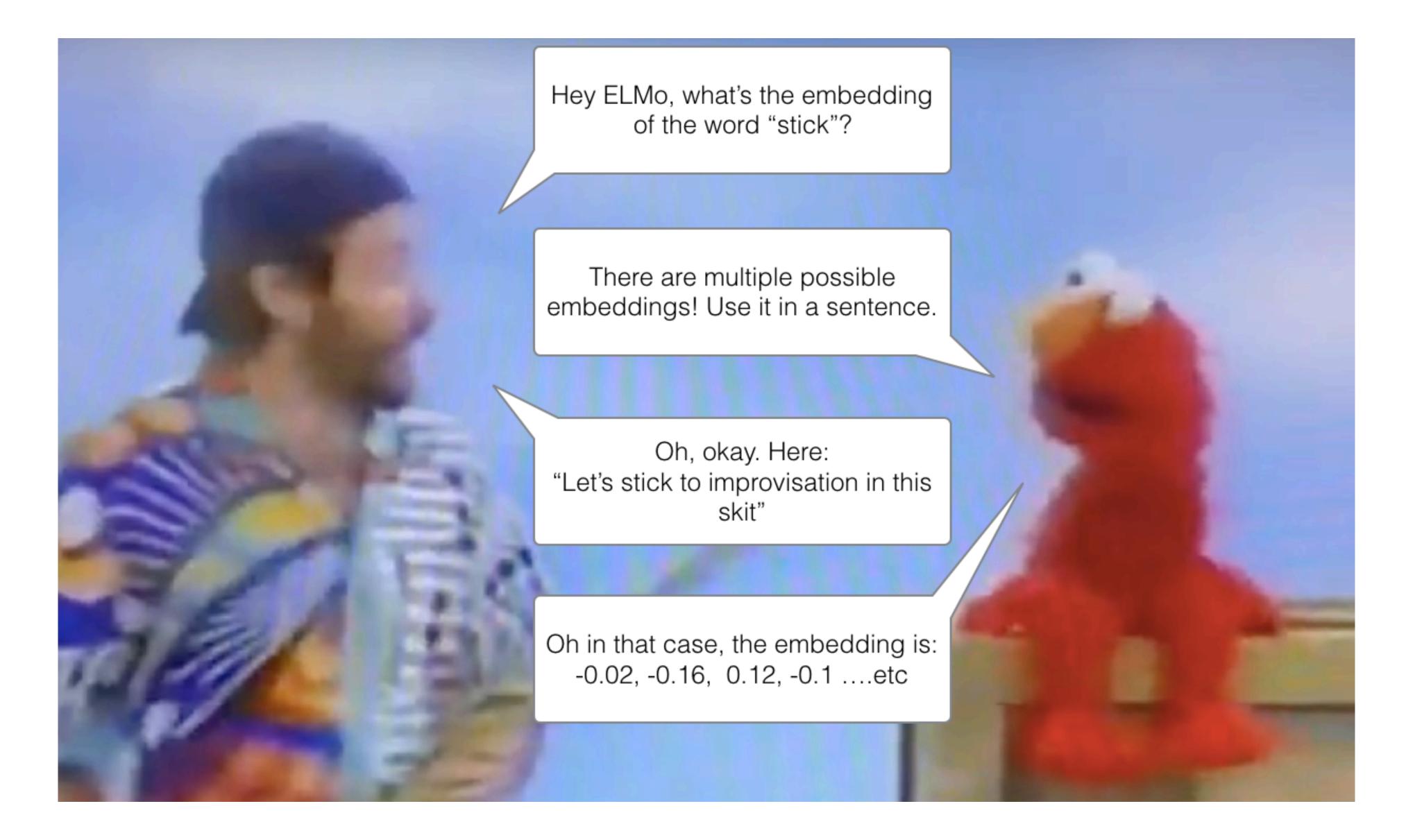
x = layers.Embedding(max features, 16)(inputs) # define a 16-dimensional Embedding layer that acts on "input: x = layers.Bidirectional(layers.LSTM(16))(x) # Add a 16-node bi-LSTM that acts on the output of the Embeddineoutputs = layers.Dense(1, activation="sigmoid")(x) # define a 1-node sigmoid / classifier layer that acts on



2:19 AM - 25 Jan 2019

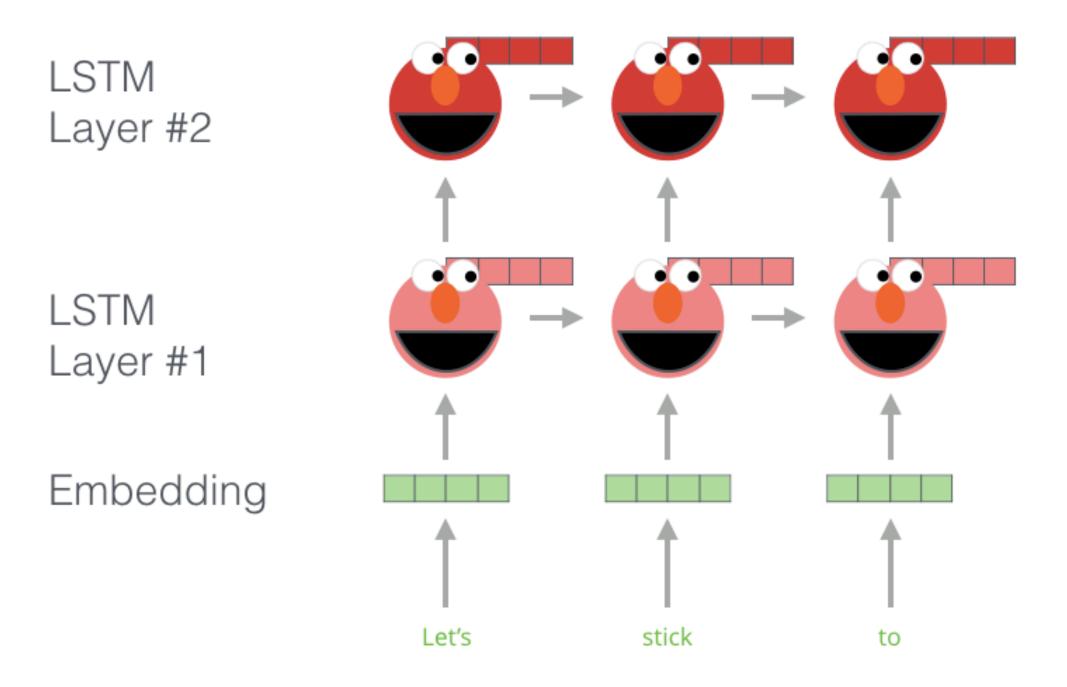
H. Suresh, 6.S191 2018. 1/19/21

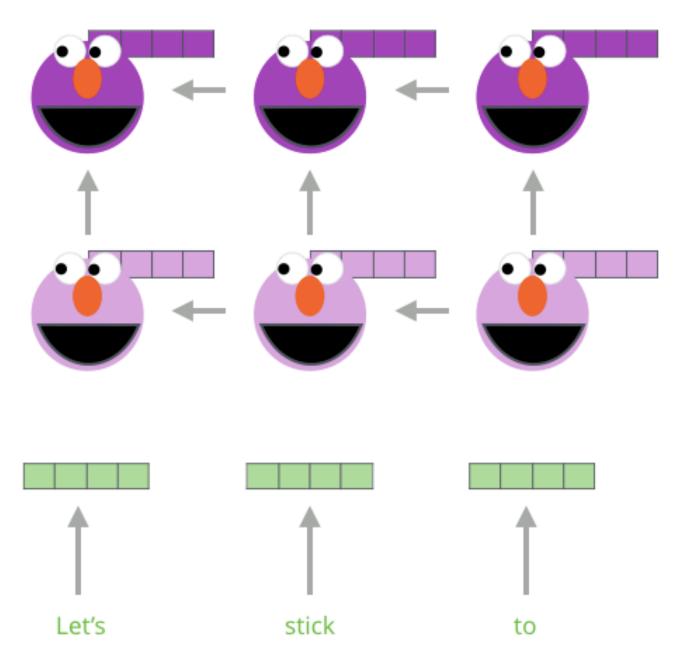
One big bi-LSTM success was ELMo — contextual embeddings



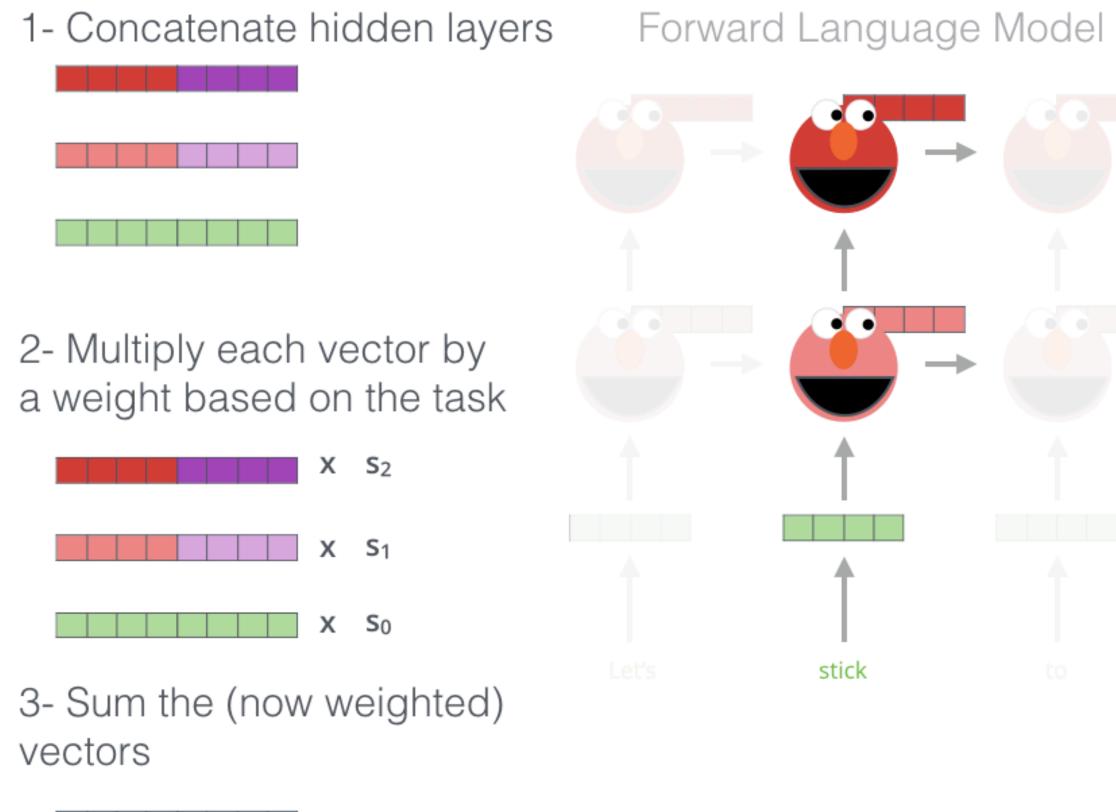
Embedding of "stick" in "Let's stick to" - Step #1

Forward Language Model





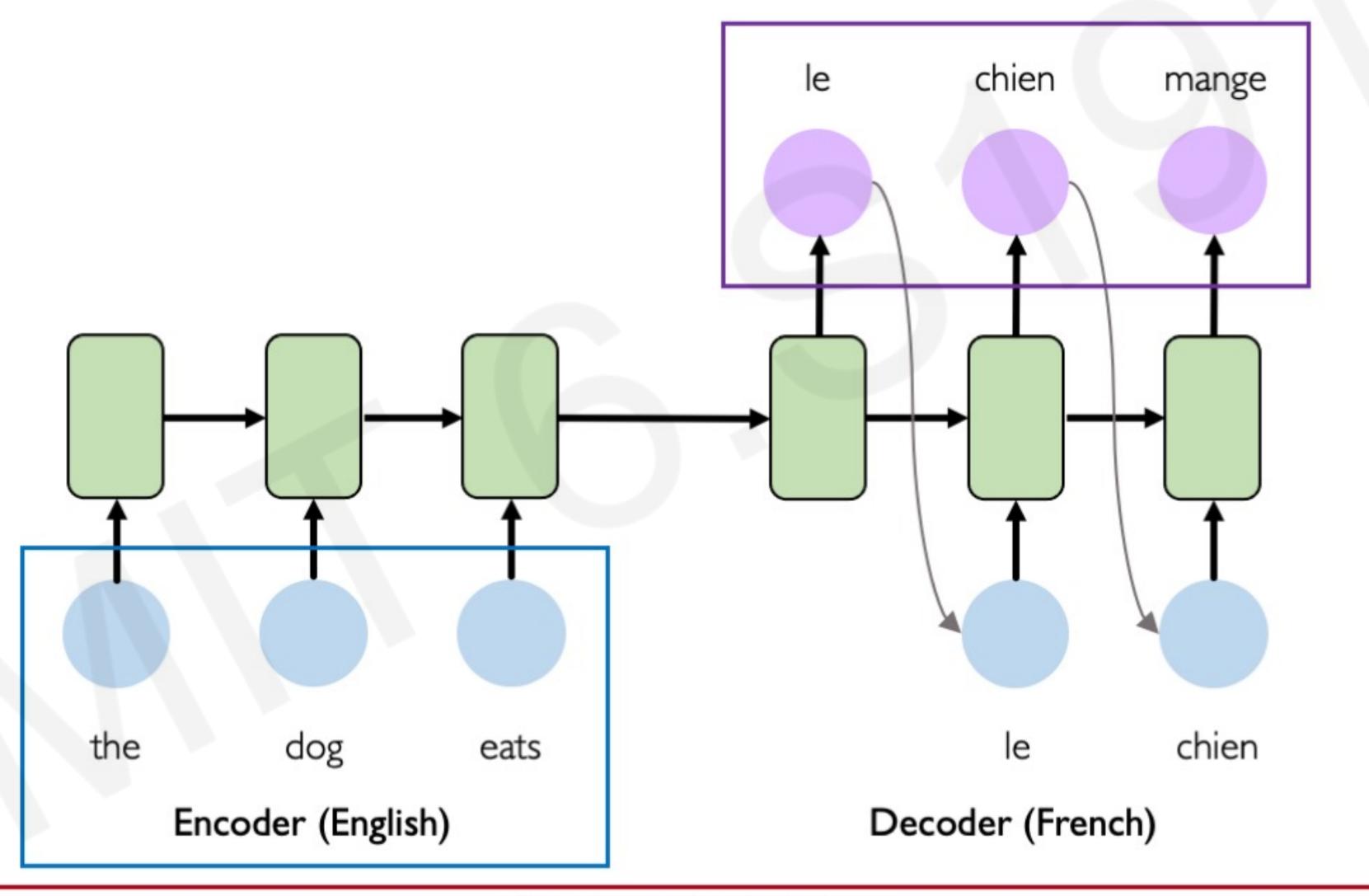
Embedding of "stick" in "Let's stick to" - Step #2



ELMo embedding of "stick" for this task in this context

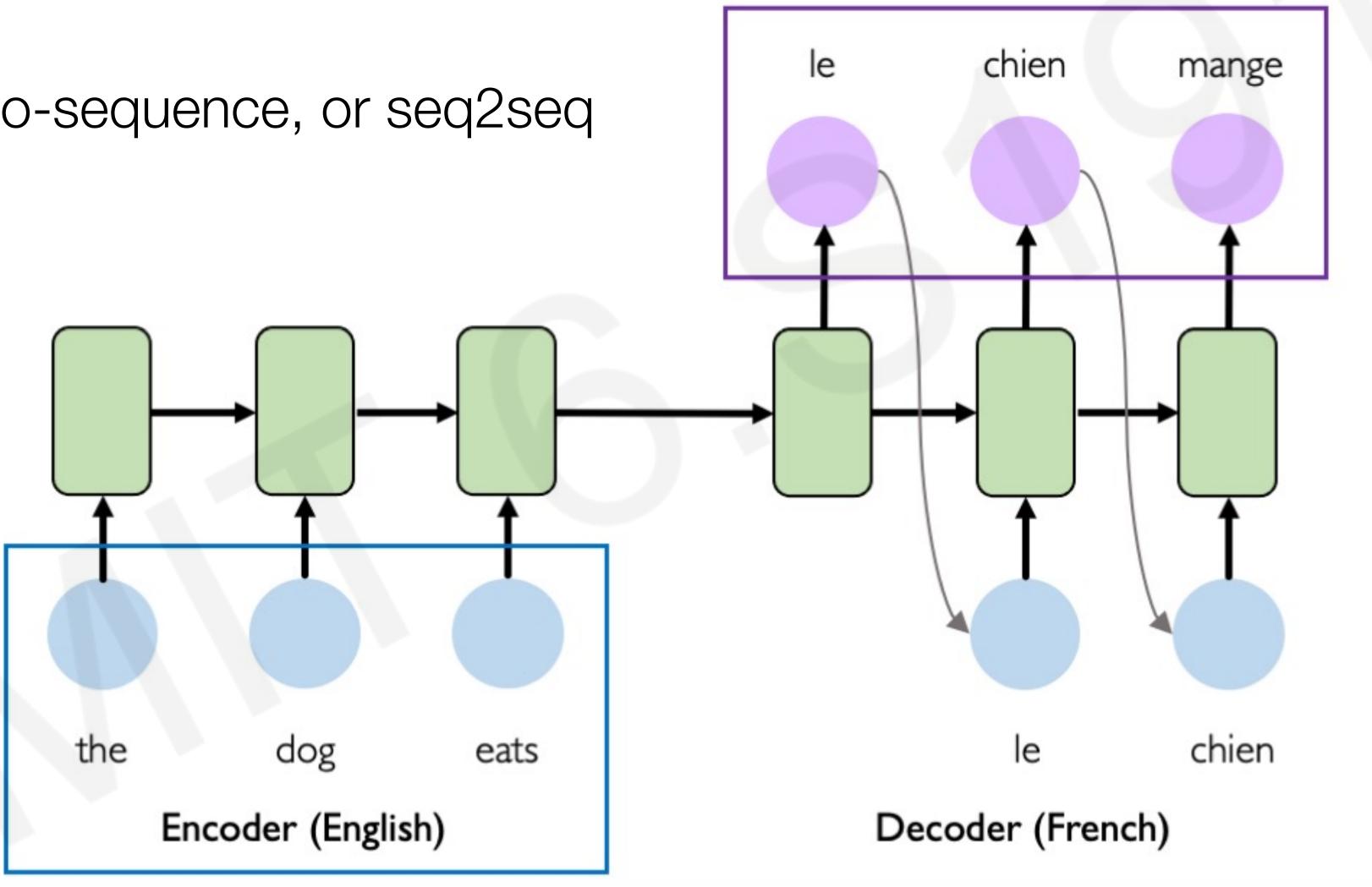
\rightarrow stick

Backward Language Model



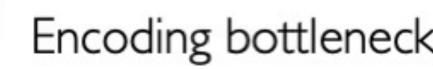
Massachusetts Institute of Technology

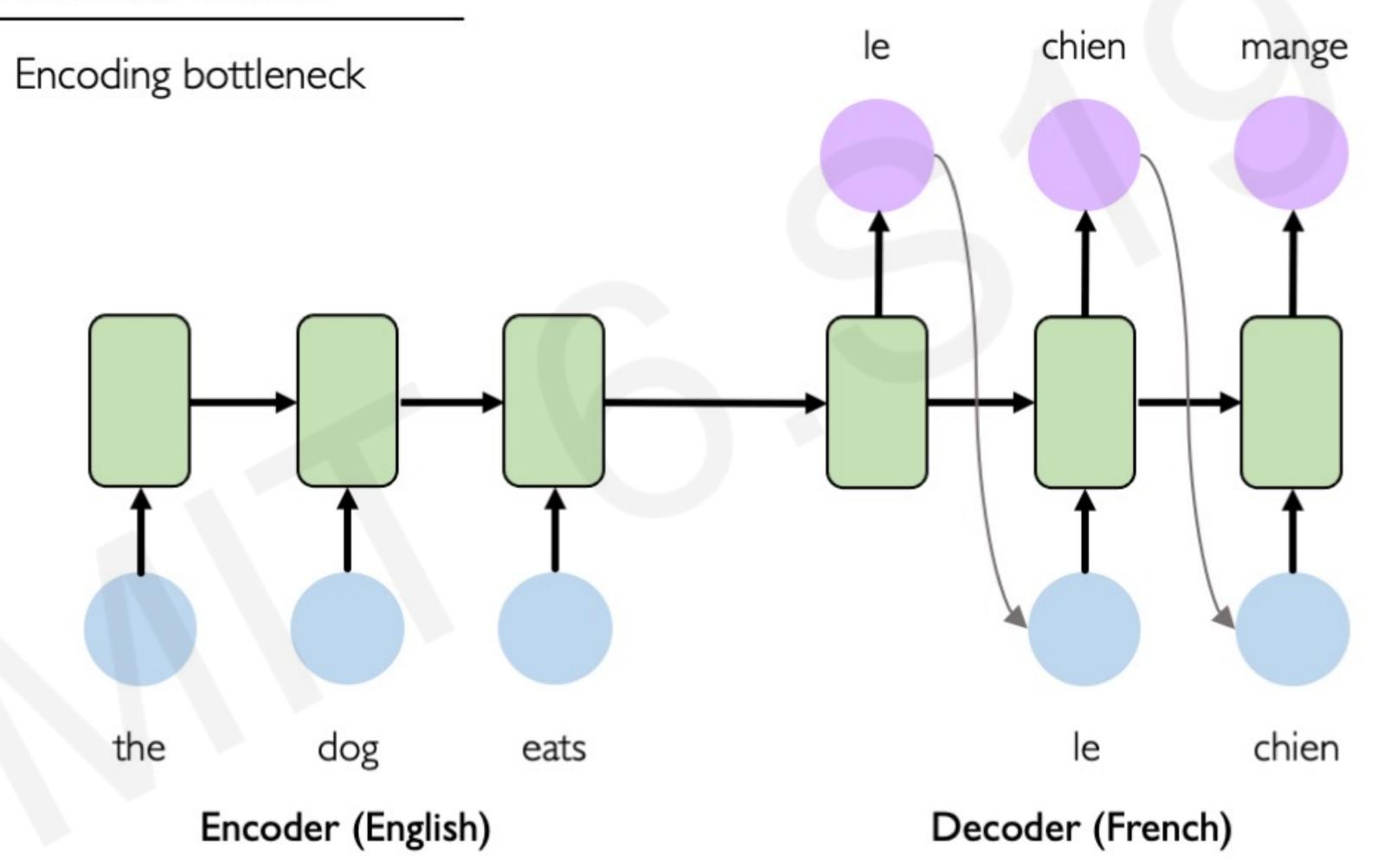
Sequence-to-sequence, or seq2seq



Massachusetts Institute of Technology

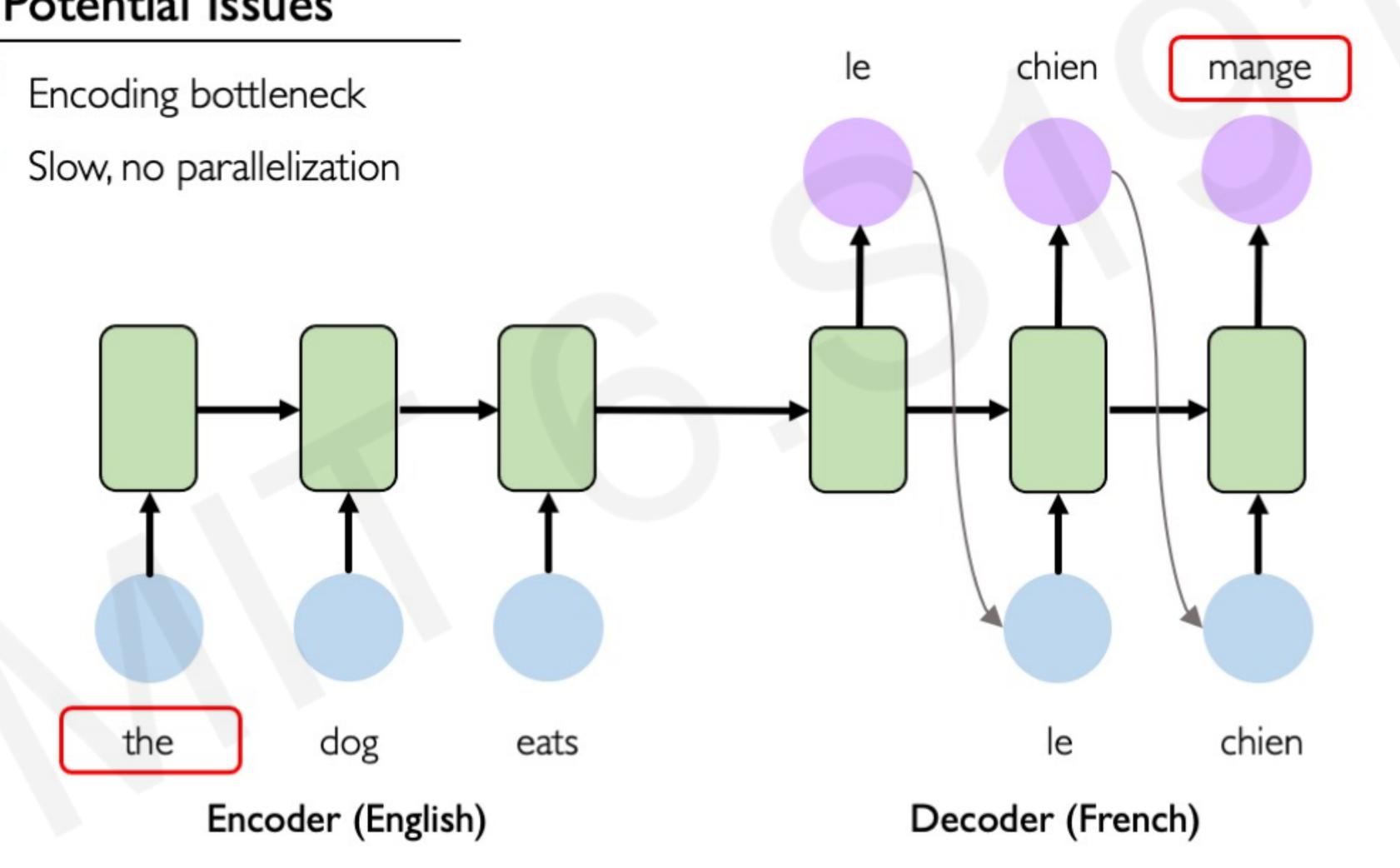
Potential Issues





6.S191 Introduction to Deep Learning introtodeeplearning.com

Potential Issues

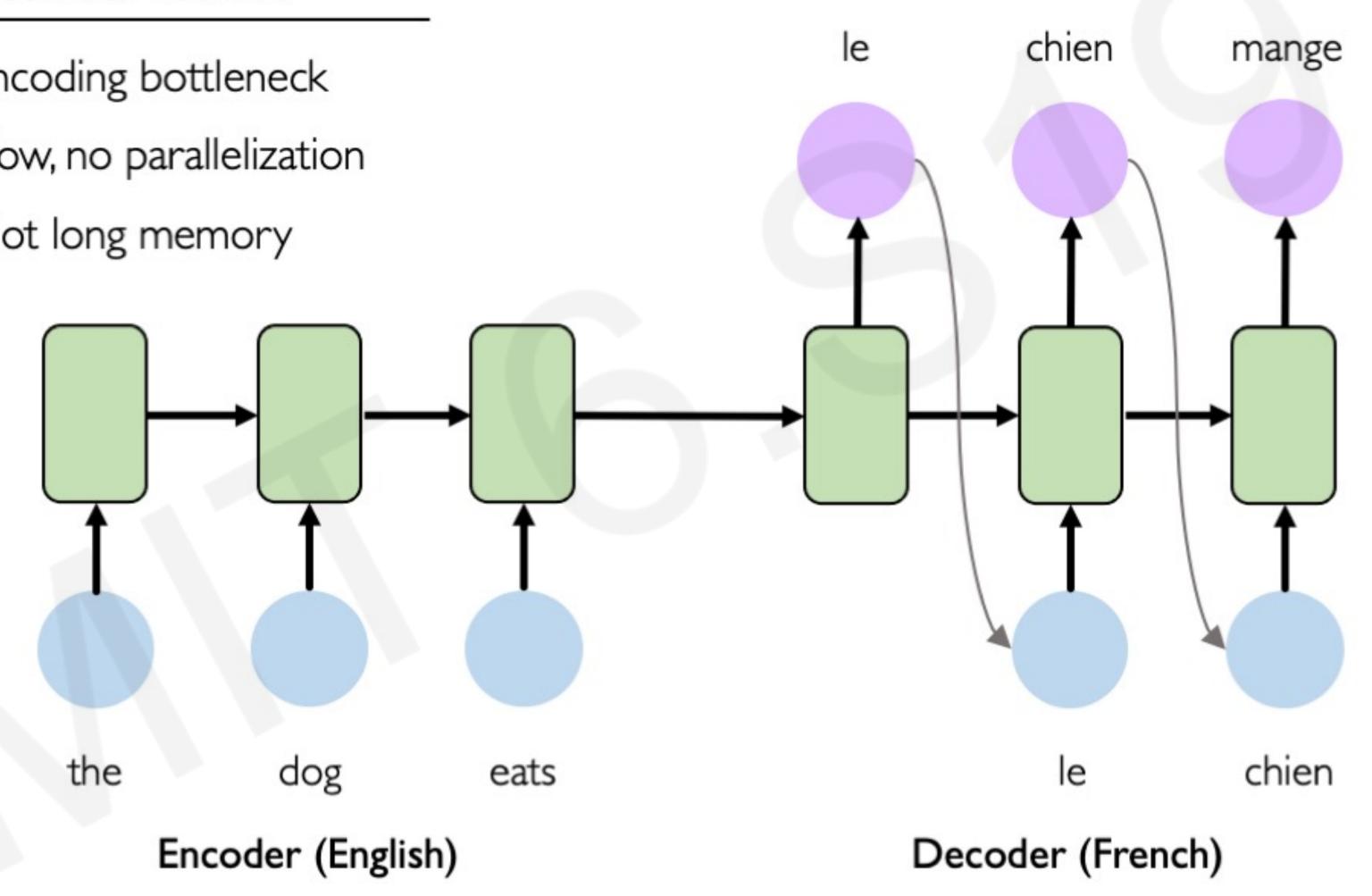


6.S191 Introduction to Deep Learning introtodeeplearning.com

Potential Issues

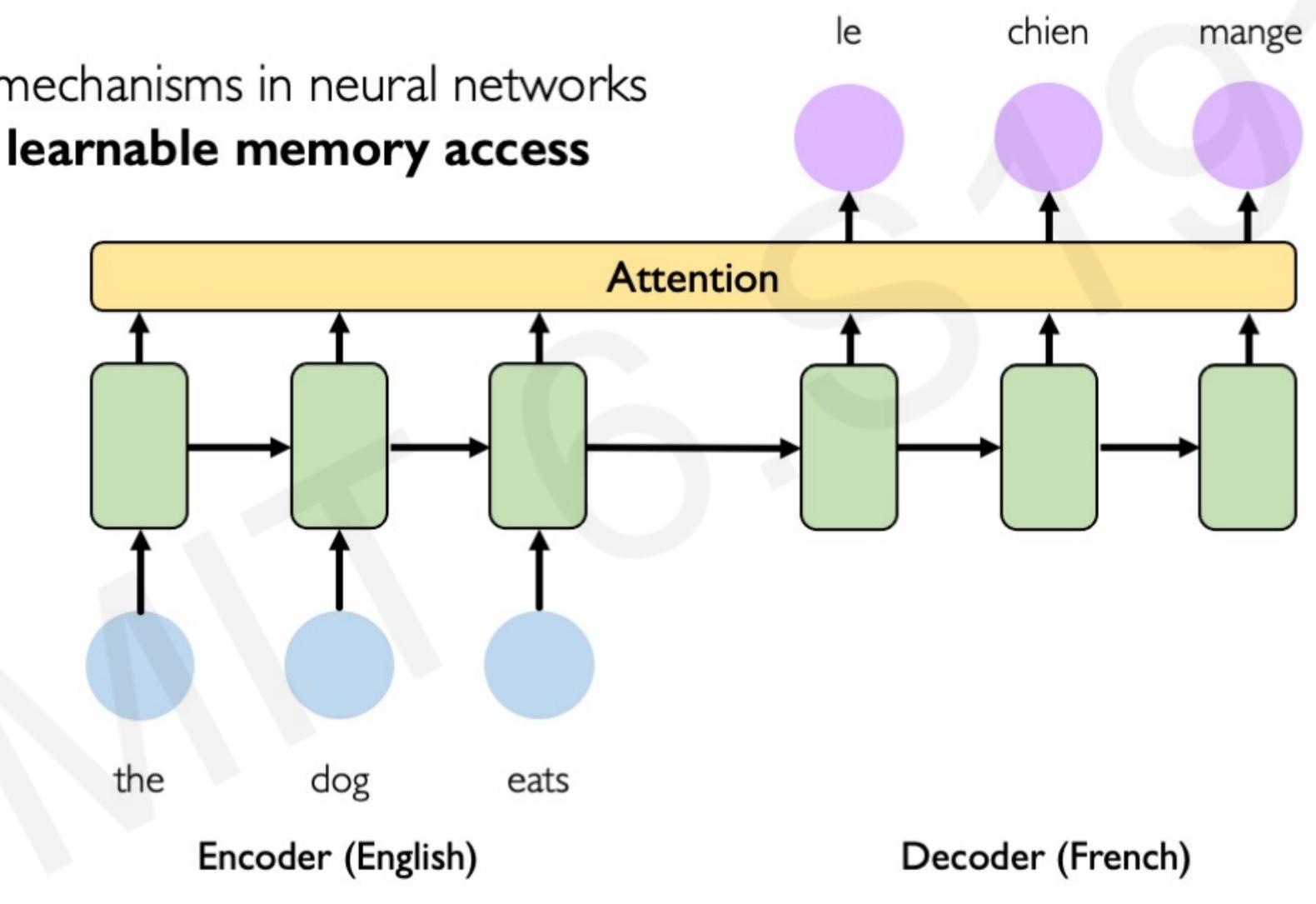
- Encoding bottleneck
- Slow, no parallelization

Not long memory



6.S191 Introduction to Deep Learning introtodeeplearning.com

Attention mechanisms in neural networks provide learnable memory access



6.S191 Introduction to Deep Learning @MITDeepLearning Sutskever+, NeurIPS 2014; Bahdanau+ ICLR 2015; 1/19/21 Vaswani+, NeurIPS 2017.

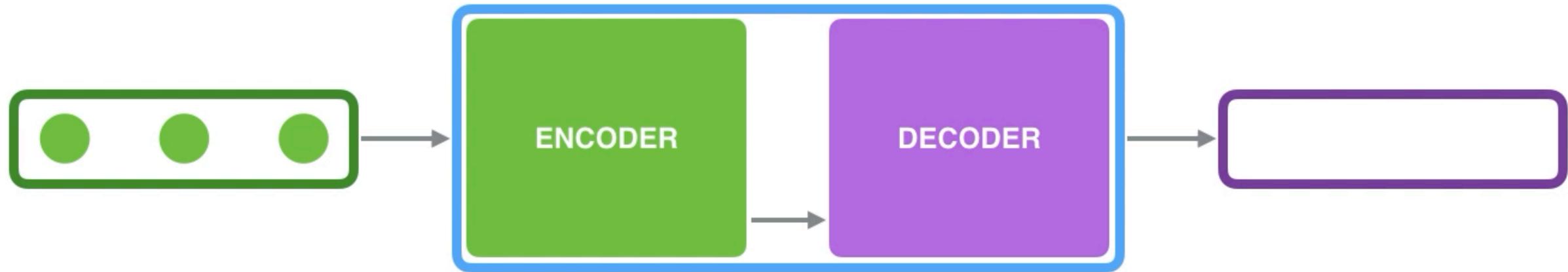
Attention

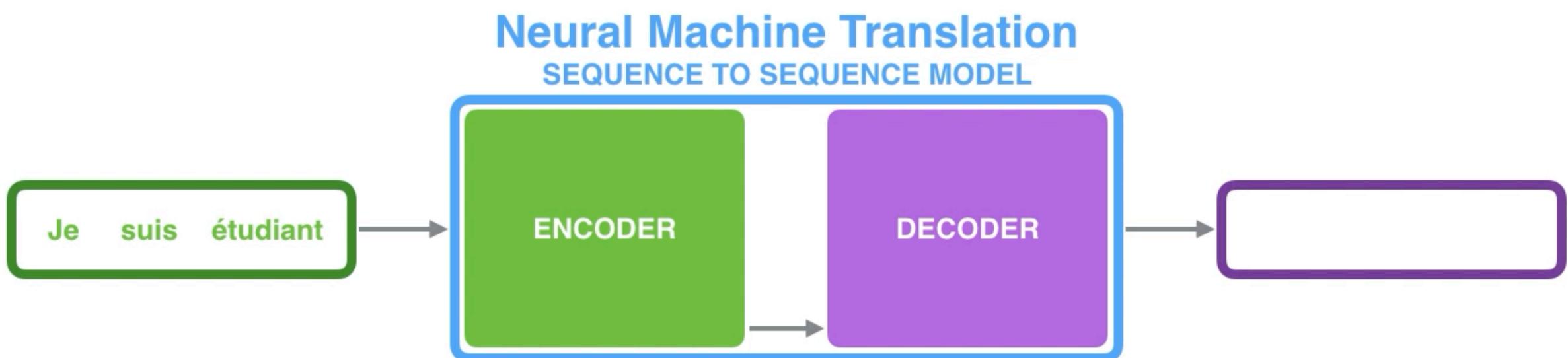
Following images/videos from Jay Alammar, "The Illustrated Transformer" and "Visualizing a Neural Machine Translation Model (Mechanics of Seq2seq Models with Attention")



Neural Machine Translation SEQUENCE TO SEQUENCE MODEL

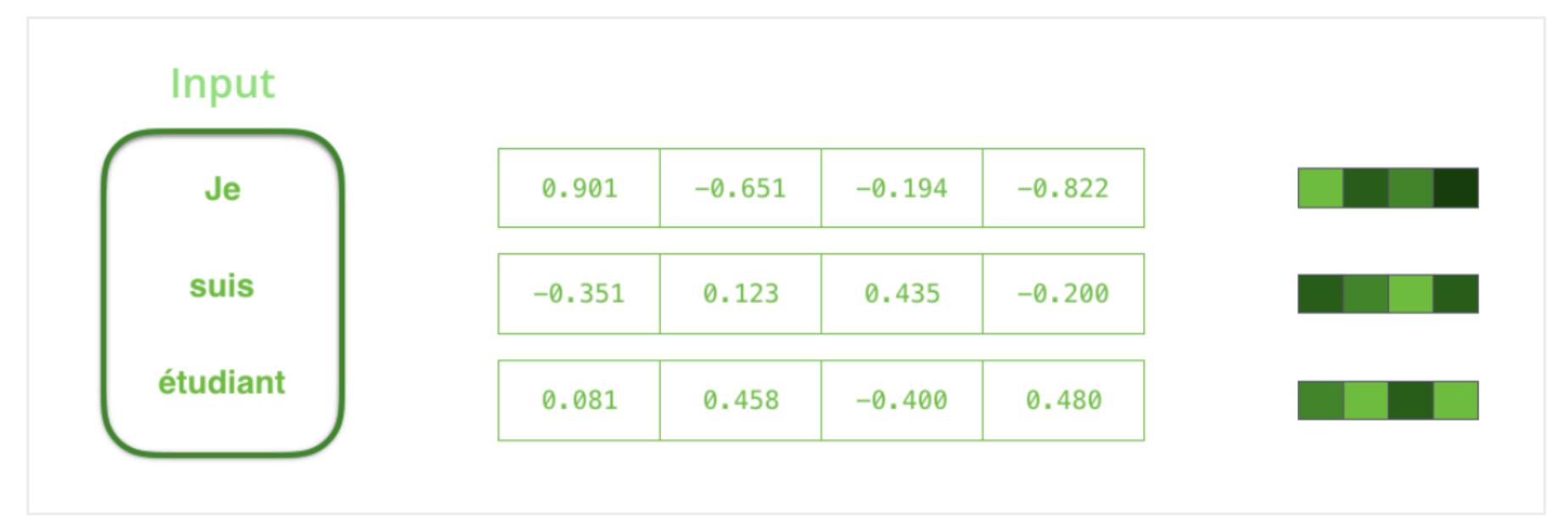
SEQUENCE TO SEQUENCE MODEL





SEQUENCE TO SEQUENCE MODEL

The context is a vector of floats. Later in this post we will visualize vectors in color by assigning brighter colors to the cells with higher values.



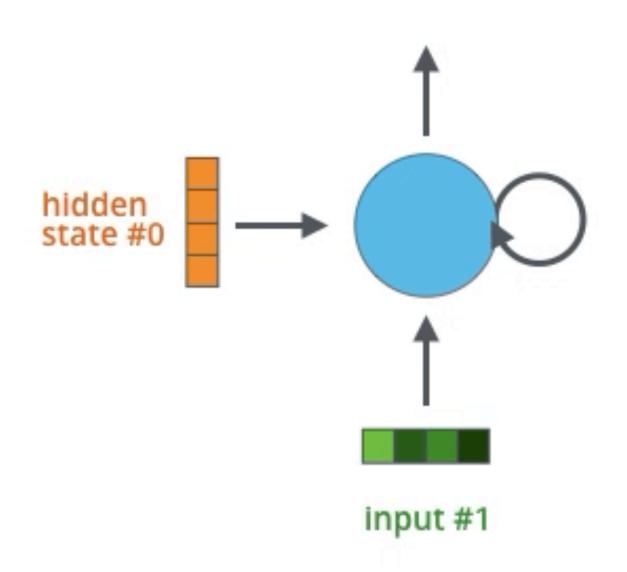
We need to turn the input words into vectors before processing them. That transformation is done using a word embedding algorithm. We can use pre-trained or 300 are typical, we're showing a vector of size four for simplicity.

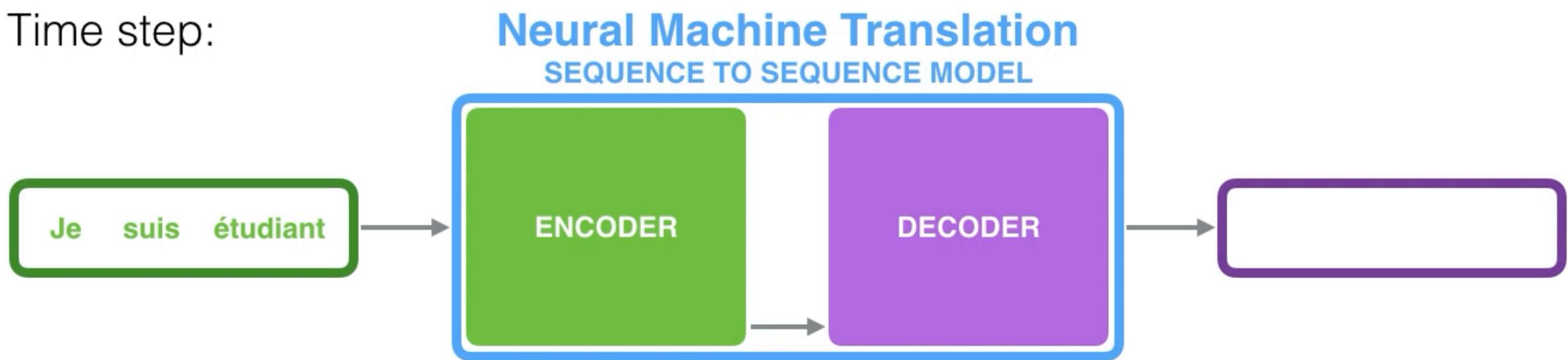
embeddings or train our own embedding on our dataset. Embedding vectors of size 200

Recurrent Neural Network

Time step #1: An RNN takes two input vectors:

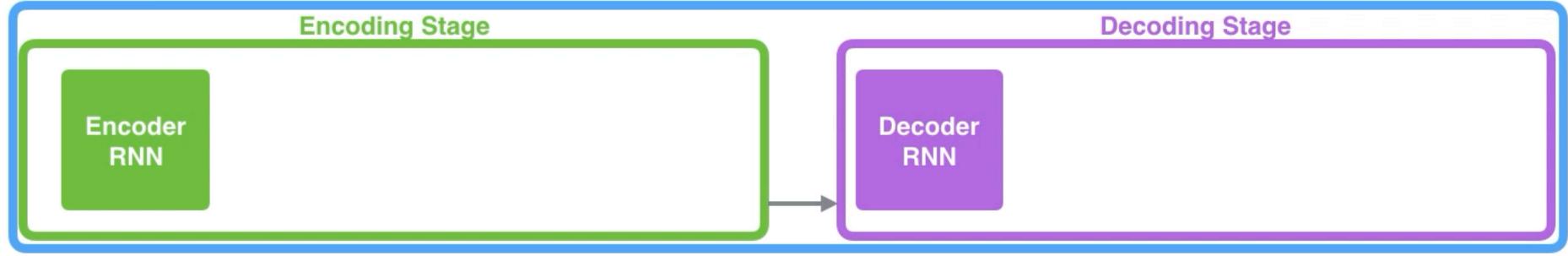
input vector #1





Neural Machine Translation SEQUENCE TO SEQUENCE MODEL

suis



étudiant

Neural Machine Translation SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

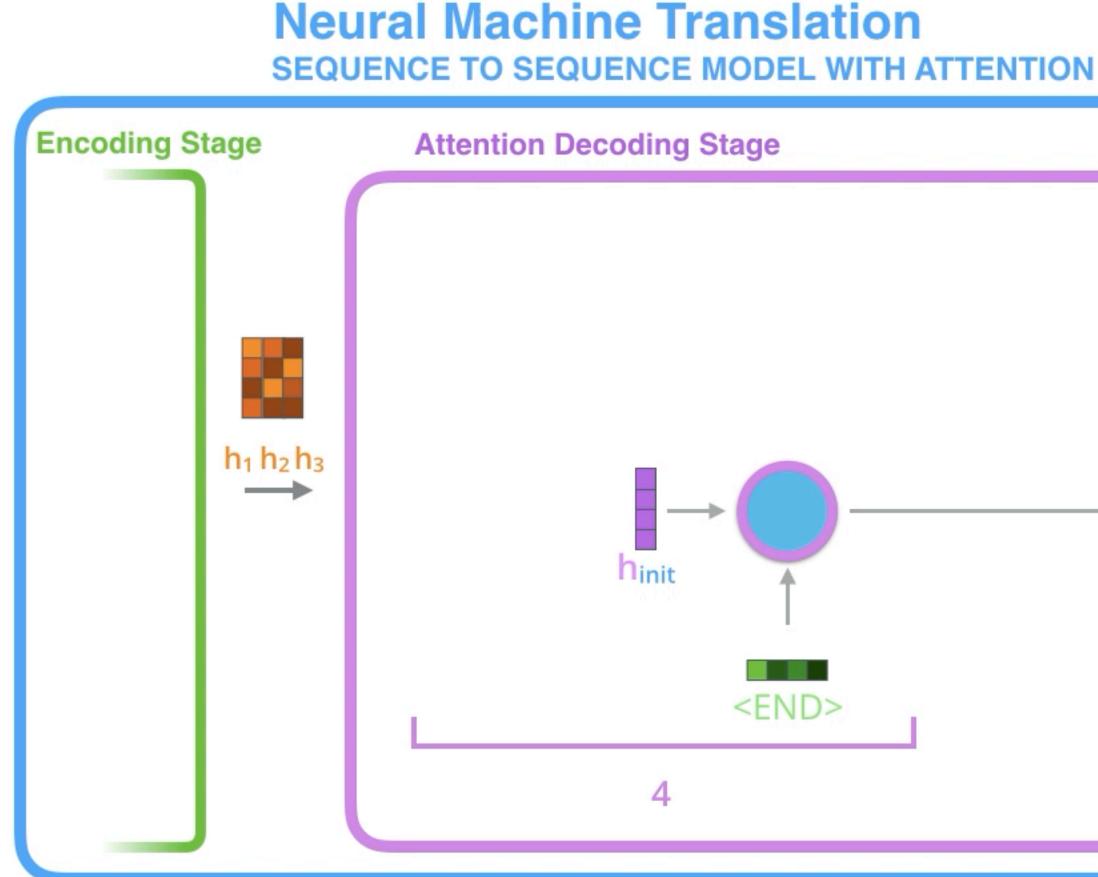
Je

suis

étudiant

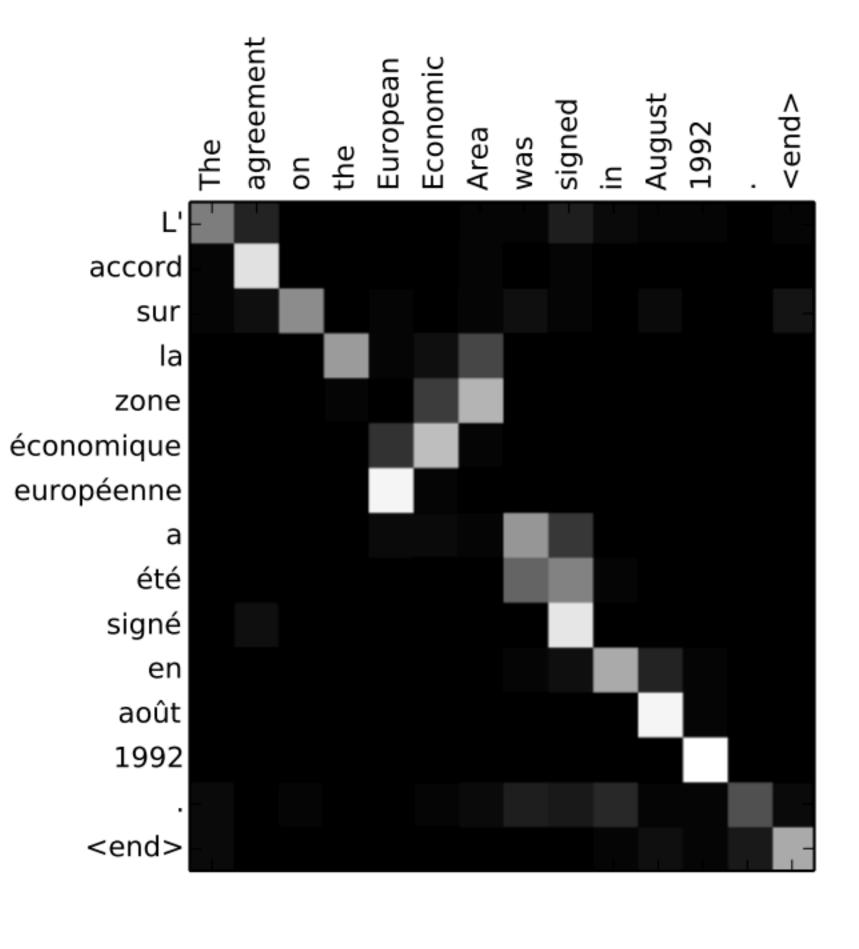
Attention at time step 4

- step.
- 4. We concatenate h4 and C4 into one vector.
- 5. We pass this vector through a feedforward neural network (one trained jointly with the model).
- 6. The output of the feedforward neural networks indicates the output word of this time step.
- 7. Repeat for the next time steps

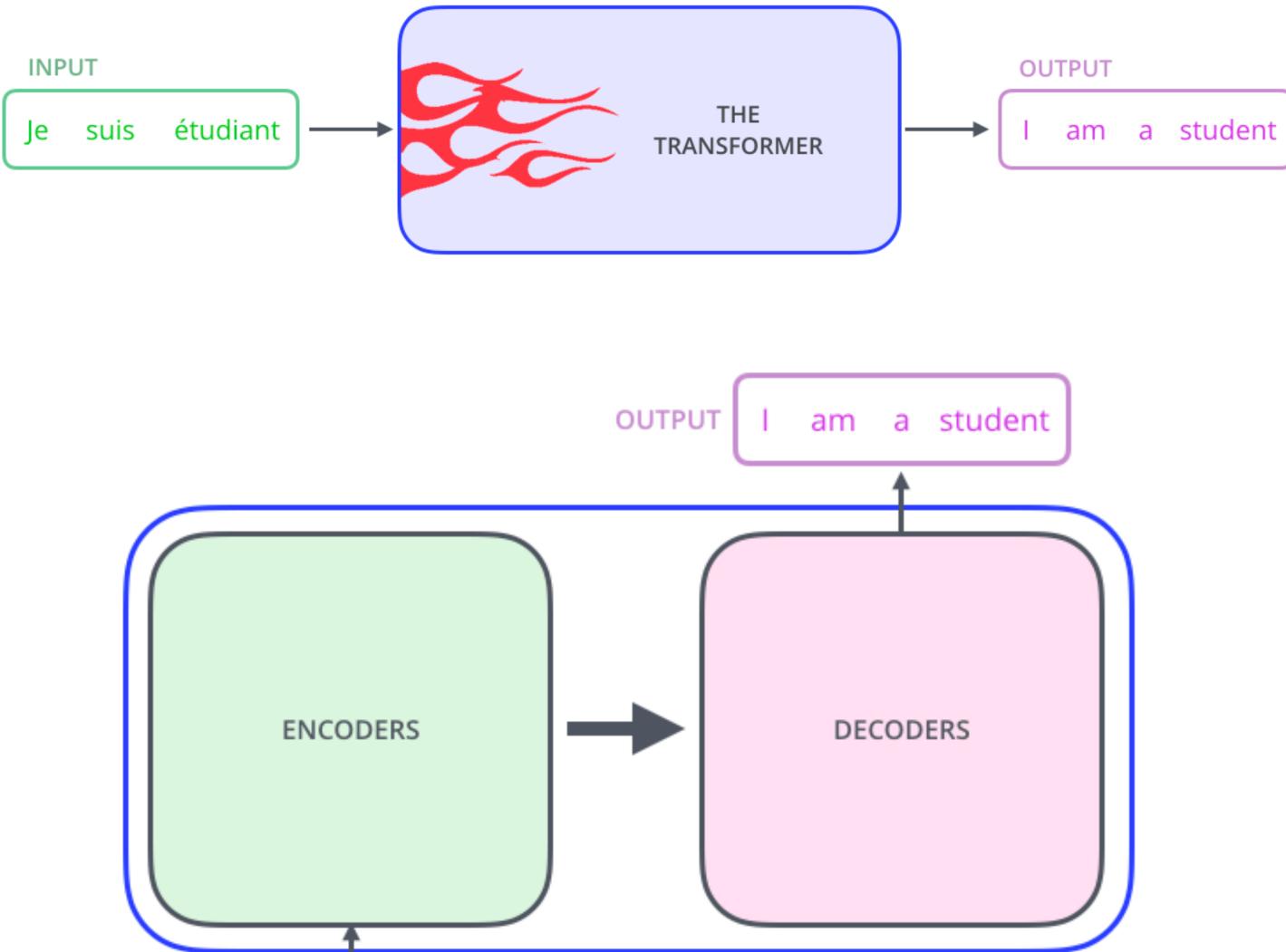


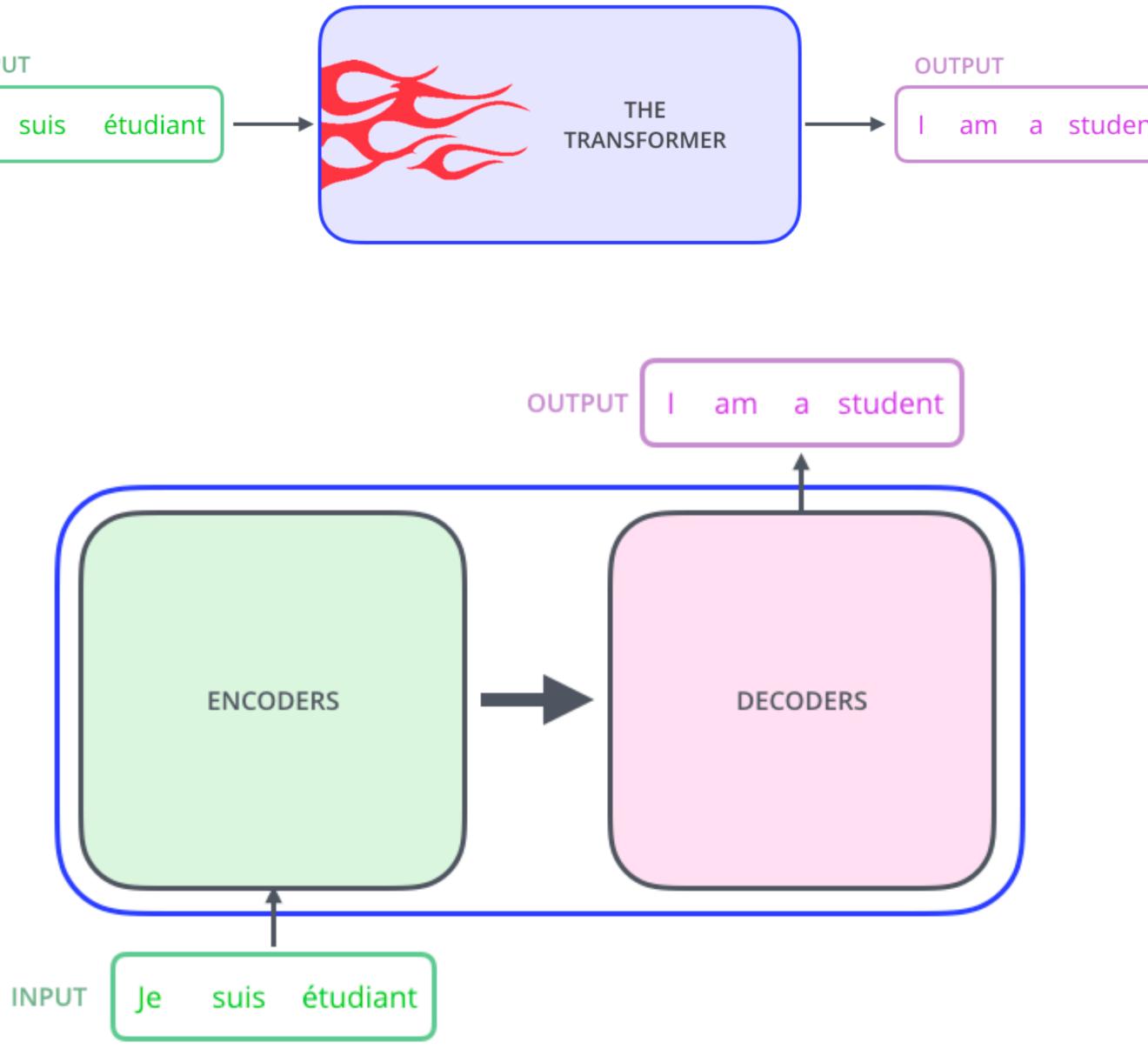
1. The attention decoder RNN takes in the embedding of the <END> token, and an initial decoder hidden state. 2. The RNN processes its inputs, producing an output and a new hidden state vector (h4). The output is discarded. 3. Attention Step: We use the encoder hidden states and the h4 vector to calculate a context vector (C4) for this time

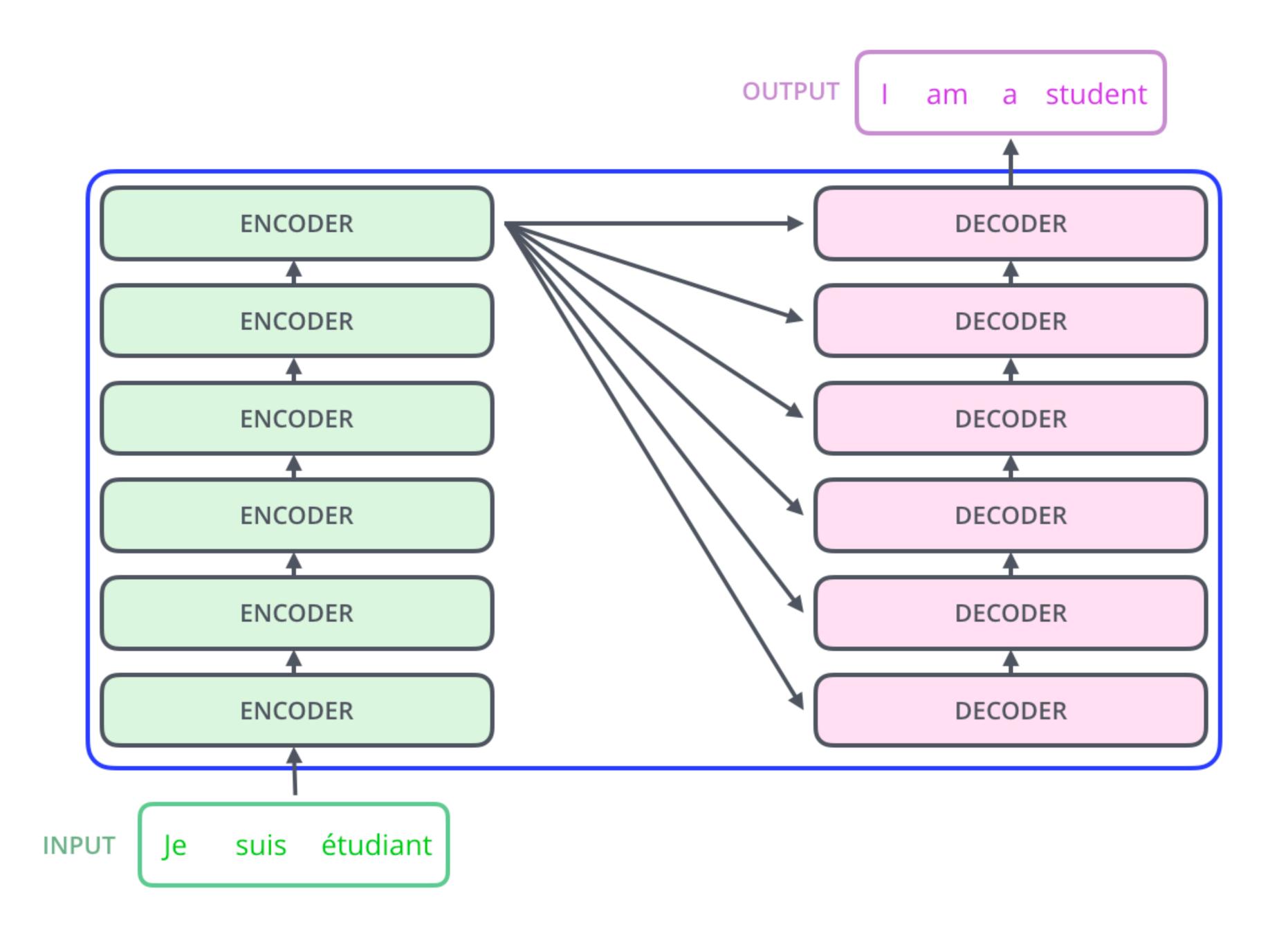
	Encoder hidden state	
Je	hidden state #1	
suis	hidden state #2	
étudiant	hidden state #3	

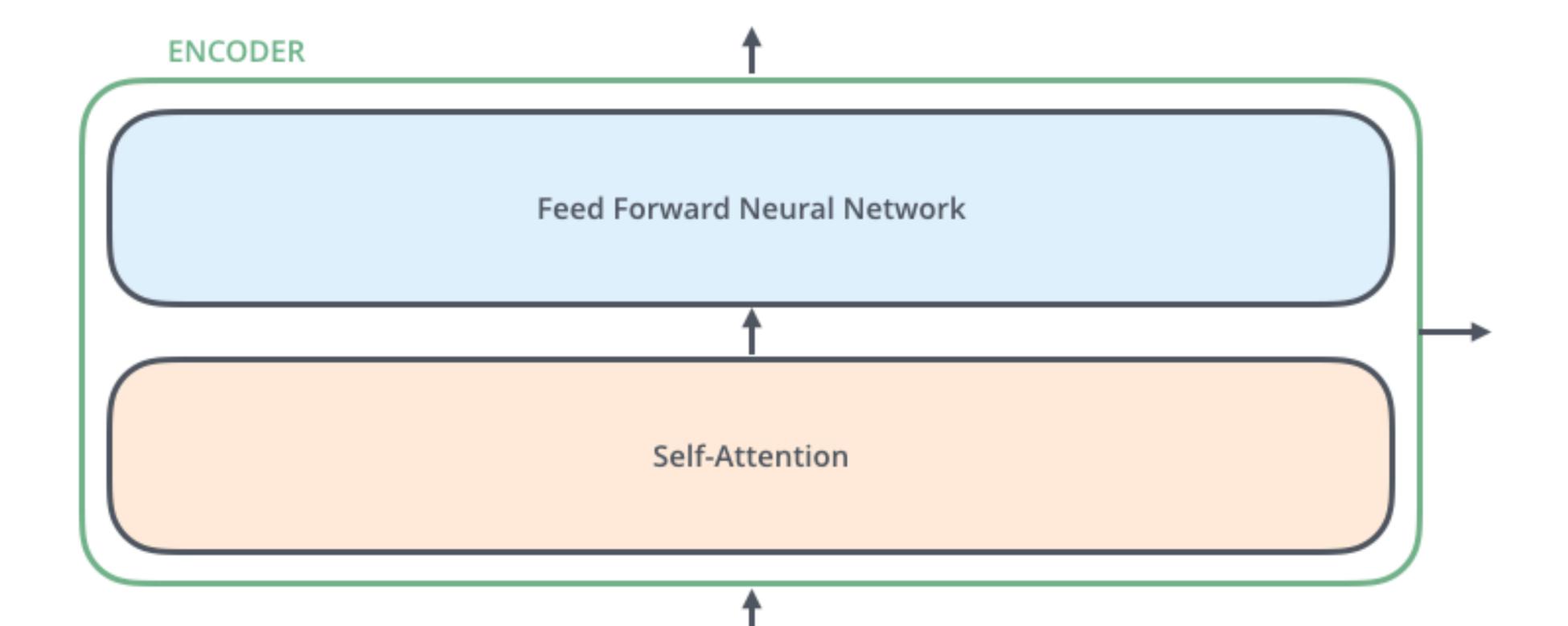


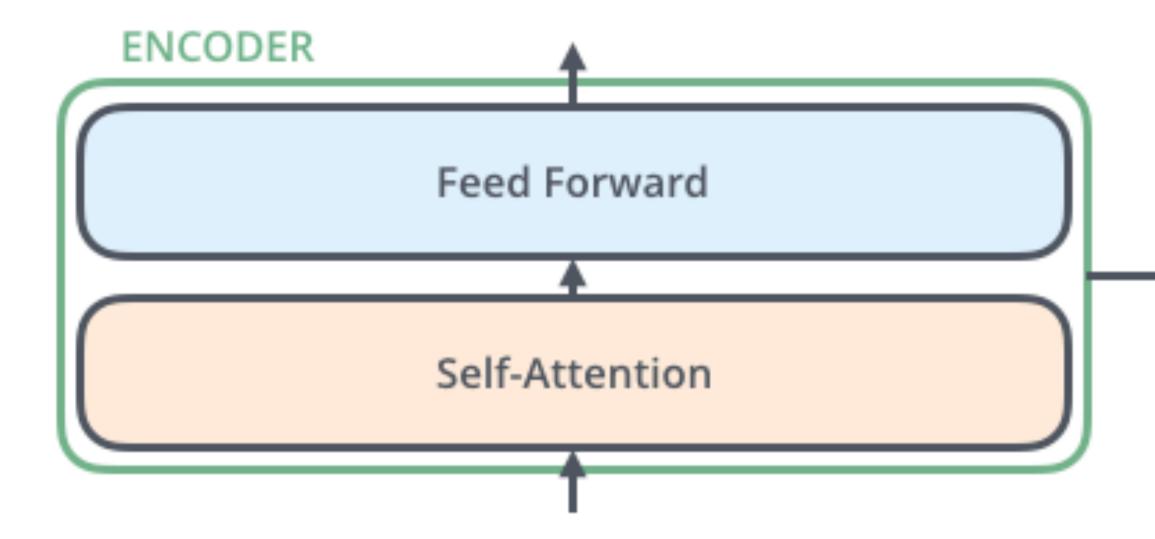
The transformer ("Attention is All You Need")

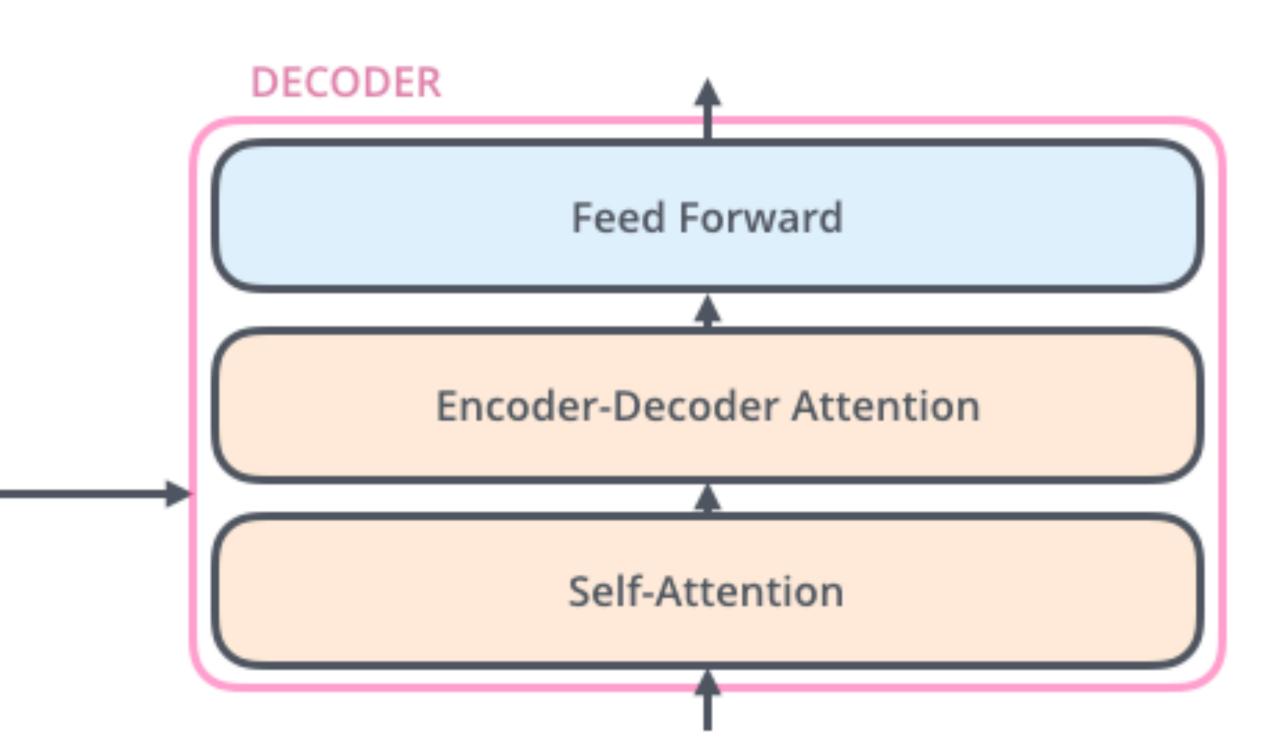


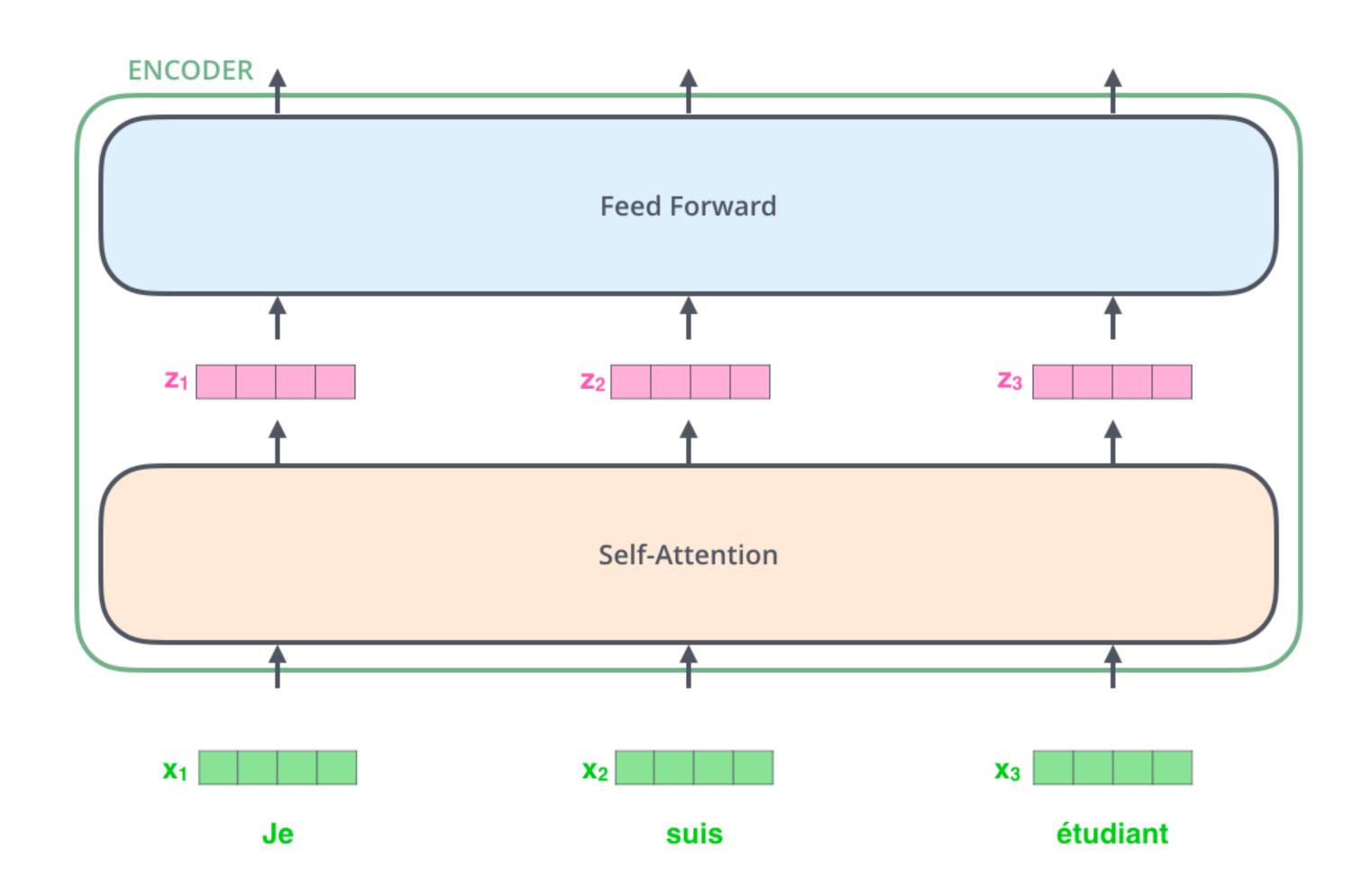


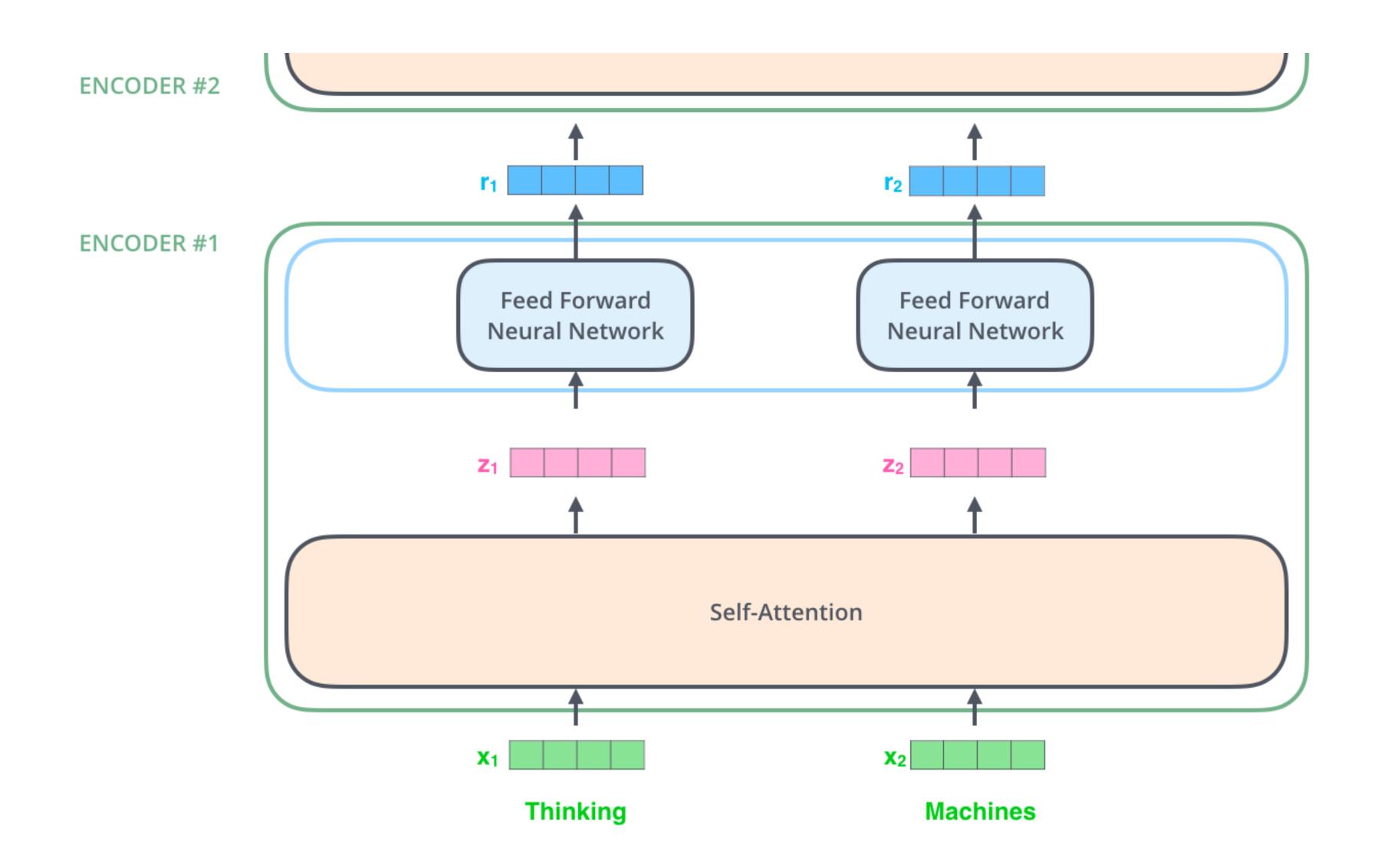




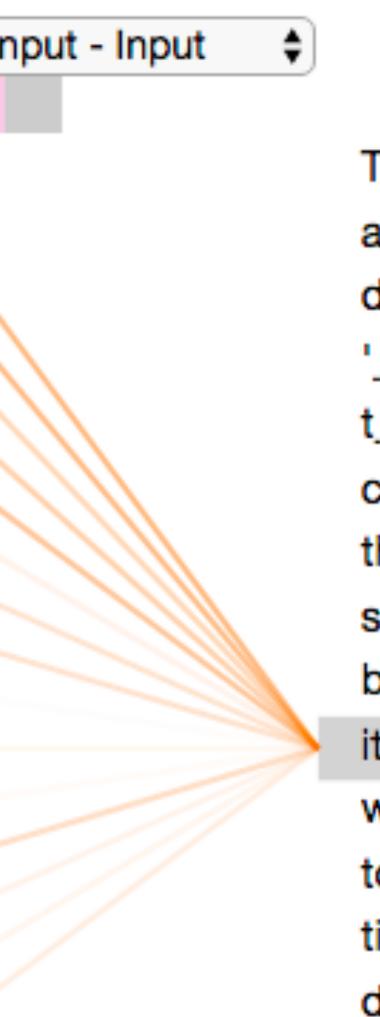






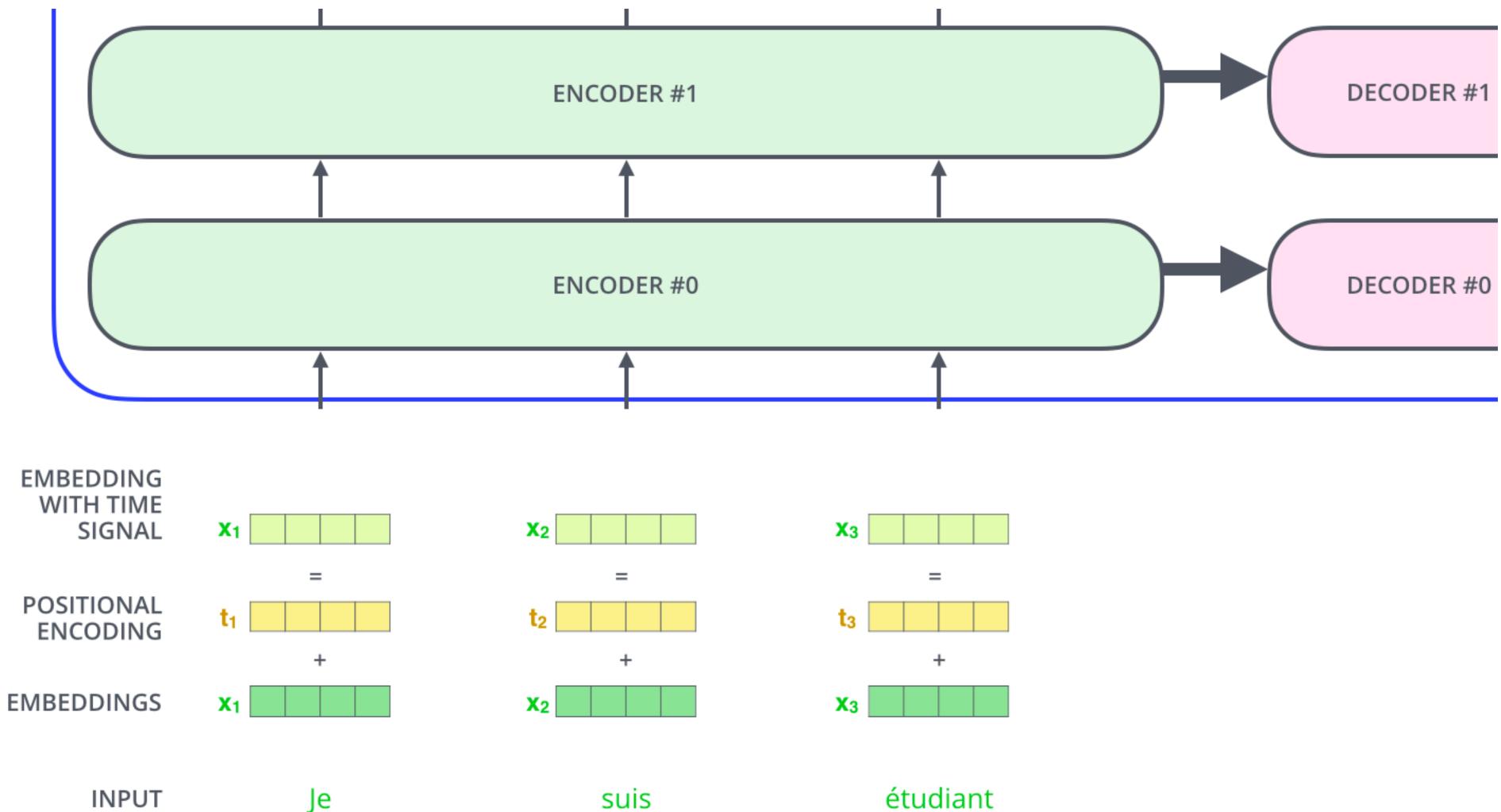


Layer: 5 \$ Attent	ion: In
The_	k
animal_	\sim
didn_	$\langle \rangle \rangle$
· · · · · · · · · · · · · · · · · · ·	$\langle \rangle \rangle$
t_	
cross_	
the_	
street_	
because_	
it_	
was_	
too_	
tire	
d_	

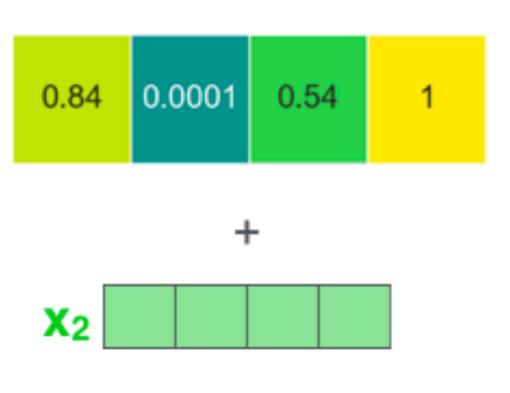


The_ animal_ didn_ _ t_ cross_ the_ street_ because_ it_ was_ too_ tire **d_**

Matrix math of self-attention - yada yada yada Multi-headed attention - blah blah blah



étudiant



suis

étudiant

