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Today

+ Convolutional Neural Nets (CNNs) - Convolution, filters/kernels, higher-level
features

+ Recurrent Neural Nets (RNNs) - Recurrence / sequence, encoder-decoder
SeqZseo

- @Gating in recurrent networks (LSTMs / bi-LSTMs)
+ Attention mechanism in seg2seqg models

- Self-attention & positional encodings (transformer)



Today (unlikely)

+ Convolutional Neural Nets (CNNs) - Convolution, filters/kernels, higher-level
features

+ Recurrent Neural Nets (RNNs) - Recurrence / sequence, encoder-decoder
SeqZseo

- @Gating in recurrent networks (LSTMs / bi-LSTMs)
+ Attention mechanism in seg2seqg models

- Self-attention & positional encodings (transformer)



Convolution, Convolutional Neural Nets, and CNNs in NLP



Convolution
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Source: Wikipedia, “Convolution”



Kernel density — smooth histogram by convolving a Gaussian over observations
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Source: Wikipedia, “Kernel Density”



Kernel density — how smooth depends on variance / “width” of the Gaussian
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Source: Wikipedia, “Kernel Density”



Kernel density — smooth in two dimensions
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Source: Wikipedia, “Kernel Density”



Kernel density — this is familiar in “heatmaps”
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Source: Fedor Kolomeyko, www.digital-geography.com



http://www.digital-geography.com

Now Imagine an image as two-dimensional data — a grid of pixel intensities

167 11583 1174 (168 (150 (152 1129 (181 (172 (161 (155 [ 156
1556 (182 (163 | 74 | 75 &2 X | 17T (110 (270 (180 | 154

180 (180 S0 4 24 6 10

106 1189 |18,

206 1109 51124 113 1111 (10

£
5

15 5 180

194 | €8 137 (251 (237 (289 289

&
B
=
5

20

172 1106 207 1233 1283 (274 (220 23 228 98 74 2%

188 | &8 (179 (209 (185 (206 271 (188 |13 | 75| W0 (189

189 | 97 (165

10 1168 (134 7 11 ) 31 62 12 (148
199 1168 (191 (193 (158 1227 (178 (143 (182 106 | 3% | 190
206 (174 (155 1252 1236 (2] (149 (178 43 % 23

228
190 1276 (176 (149 236 (187 & (150 79 | 38 (278 24)
%

190 1224 147 (108 227 (270 (127 o2 101 1256 224
190 1274 (173 | 66 (103 (143 | 96 =0 2 109 249 205
187 1196 1236 | 75 18 & 0 6 W7 286 | 2N

183

8

237 (1457 07 0 12 108 (200 (138 (243 28

196

&

123 1207 177 111 1123 (200 (195 13

278

Source: Stanford Artificial Intelligence Laboratory, Introduction to Computer Vision, “Image Filtering”



An Image filter 1s a kernel - a small window we convolve over an image.
The filter illustrated here averages the nine pixels in the window.
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Source: Stanford Artificial Intelligence Laboratory, Introduction to Computer Vision, “Image Filtering”



A ~Gaussian kernel (high in the middle, lower away from the middle)
acts as a smoothing or “blur filter”
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(a) Blur kernel. (b) Blur kernel applied.



The kernel on the right acts as an “edge filter”
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(a) Blur kernel. (b) Blur kernel applied. (c) Edge kernel. (d) Edge kernel applied.

Figure 8: Effect of convolutional image kernels.



Feature maps

T

Convolutions Subsampling Convolutions Subsampling Fully connected

Source: Wikipedia, “Convolutional Neural Nets”



CNN layers learn filters to detect and combine higher level “features”
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CNN layers learn filters to detect and combine higher level “features”




Convolutional Neural Network Visualization (Images)

http://scs.ryerson.ca/~aharley/vis/



http://scs.ryerson.ca/~aharley/vis/

Typical CNN architecture for NLP 7-gram features detected by CNN

+ activation function

POSITIVE
convolution * T-max l softmax functior lovely comedic moments and  several fine performances
4( 3regioisizes: FErm T v M l i this fayer good script , good dialogue funny
Sentence matrix 2 filters for each region | | maps for 6 univariate 2 classes sustains throughout 1s daring , inventive and
x5 totally 6 filters commmize | | conoatonated well written : nicely acted and beautifully
o e foatre remarkably solid and subtly satirical tour de
vector NEGATIVE
. nonexistent plot and pretentious visual style
it fails the most basic test as
d=5 SO stupid ? SO 1ll conceived ,
| " too dull and pretentious to be
{ﬁz hood rats butt their ugly heads in
movie
very "NOT'
mueh T~ n't  have any huge laughs in its
I no movement no , not much
n't stop me from enjoying much of
/////// not that kung pow 1is n't funny
not a moment that 1is not false
"TOO'
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feels too formulaic and too familiar to
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Figure 1: Illustration of a CNN architecture for sentence classification. We depict three filter region sizes:

2, 3 and 4, each of which has 2 filters. Filters perform convolutions on the sentence matrix and generate

(variable-length) feature maps; 1-max pooling is performed over each map, i.e., the largest number from Source: Kalchbrenner, et al. (2014)
each feature map is recorded. Thus a univariate feature vector is generated from all six maps, and these

6 features are concatenated to form a feature vector for the penultimate layer. The final softmax layer

then receives this feature vector as input and uses it to classify the sentence; here we assume binary

classification and hence depict two possible output states.

Source: Zhang and Wallace (2015)
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© # Build the model
inputs = keras.Input(shape=(None,), dtype="int32")
x = layers.Embedding(max features, 16)(inputs) #
x = layers.Conv1lD(filters=128, kernel size=5, strides=1, padding='same', activation='relu')(x) #
x = layers.GlobalMaxPoolinglD() (x)
x = layers.Dense(1l6, activation = 'relu') (Xx)
outputs = layers.Dense(l, activation="sigmoid") (x) #
model = keras.Model (inputs, outputs) #
model.summary ()

Model: "model 1"

Layer (type) Output Shape Param #
input_4 (Inputlayer)  [(Nome, Nome)] 0
embedding 3 (Embedding) (None, None, 16) 80000
convld 3 (ConvlD) (None, None, 128) 10368
global max poolingld 2 (Glob (None, 128) 0

dense 4 (Dense) (None, 16) 2064
dense 5 (Dense) (None, 1) 17

Total params: 92,449
Trainable params: 92,449
Non-trainable params: 0




Modeling sequence with recurrence



Sequence Modeling Applications

1
T

One to One
Binary Classification

T2 4

“"WIll'| pass this class?”
Student => Pass?

BN Massachusetts
l l Institute of
Technology

1
T

Many to One
Sentiment Classification

b |V|al’ Hageldoorn Follow
- AMVArHaaeandodm

The @MIT Introduction to #DeeplLearning is
definitely one of the best courses of its kind
currently available online

introtodeeplearning.com
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One to Many
Image Captioning

"“A baseball player throws a ball.”

65191 Introduction to Deep Learning

@ introtodeeplearning.com

W @MITDeeplLeaming

Many to Many
Machine Translation

1/19/21



The Perceptron Revisited
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Feed-Forward Networks Revisited
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Feed-Forward Networks Revisited

y. € R"

6.5191 Introduction to Deep Learning 1/19/21

Institute of




output
vector

Handling Individual Time Steps

Ve = f(x¢)

65191 Introduction to Deep Learning

@ introtodeeplearningcom W @MITDeeplLeaming
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output
vector

Neurons with Recurrence

iInput
vector

HEm Massachusetts
I I Institute of
Technology

Ve = f(X¢, heoq)

output Input

65191 Introduction to Deep Learning
@ introtodeeplearningcom W @MITDeeplLeaming

past memory
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Neurons with Recurrence

output Yo 9 Y2
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Recurrent Neural Networks (RNNs)

output vector yt Apply a recurrence relation at every
time step to process a sequence:

SR he|= [fw|(xe) [ hea]

cell state function input old state

ht with weights
& 4 W

Note: the same function and set of
input vector Xt parameters are used at every time step

RNNs have a state, h¢, that is updated at each time step as a sequence Is processed

I I I v 65191 Introduction to Deep Learning
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RNN State Update and Output

output vector j\lt

RNN

I

Input vector Xt

6.5191 Introduction to Deep Learning 1/19/21
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RNN State Update and Output

output vector yt

¢ B
RNN
hy
& >
I Input Vector
Input vector xt xt

65191 Introduction to Deep Learmning 1/19/21
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RNN State Update and Output

output vector yt

Update Hidden State
hy he = tanh(Whphe_1 + Wipx,)

I Input Vector
Input vector xt xt

65191 Introduction to Deep Learmning 1/19/21
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RNN State Update and Output

output vector Y, Output VﬁCtO r
Yt = Whyht
i k Update Hidden State

hy hy = tanh(Wpph,_1 + Wipx,)

I Input Vector
Input vector X¢ xt

65191 Introduction to Deep Learmning 1/19/21
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RNNs: Computational Graph Across Time

Yt
‘ s ‘ N |
RNN —  Represent as computational graph unrolled across time
\_ T J
Xt
Illii' e s 65191 Introduction to Deep Learning |
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RNNs: Computational Graph Across Time

- Forward pass

Re-use theSame weight'Mmatrices at efery tinge step ;\
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RNN Implementation in TensorFlow 1F

output vector @

RNN

recurrent cell

tf.keras.layers.SimpleRNN(rnn units)

F

input vector

65191 Introduction to Deep Learning

introtodeeplearningcom % @MITDeepleamning 1/19/21



RNNs for Sequence Modeling
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‘“Vanilla” NN Sentiment Classification Text Generation Iranslation & Forecasting
Binary classification Image Captioning Music Generation
... and many other architectures and applications 5.7 65191 Lab!
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Sequence Modeling: Design Criteria

To model sequences, we need to:

|. Handle variable-length sequences

2. Track long-term dependencies

3. Maintain information about order 1

4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet
these sequence modeling design criteria

l l l i oo 65191 Introduction to Deep Learning
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A Sequence Modeling Problem: Predict the Next Word

“This morning | took my cat for a walk.”

I i l i i' o~ w 65191 Introduction to Deep Learning
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A Sequence Modeling Problem: Predict the Next VWord

“This morning | took my cat for a walk.”

given these words

I | ' i I" T 65191 Introduction to Deep Learning

wwwwww @ introtodeeplearningcom W @MITDeeplLeaming H. Suresh, 6.5191 2018. 1719721




A Sequence Modeling Problem: Predict the Next VWord

“This morning | took my cat for a walk.”

given these words predict the
next word
| Massachuse@ts 65191 Introduction to Deep Learni
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A Sequence Modeling Problem: Predict the Next VWord

“This morning | took my cat for a walk.”

given these words predict the
next word

Representing Language to a Neural Network

N ] i
0.1 P 0.9
“deep” % “learning” V 0.8 — )Yy,
/ 0.6 Y 0.4
Neural networks cannot interpret words Neural networks require numerical inputs
I I ' R — 65191 Introduction to Deep Learning 1/19/2 |
ll Technology @ introtodeeplearningcom W @MITDeepleaming




A Sequence Modeling Problem: Predict the Next VWord

“This morning | took my cat for a walk.”

given these words predict the
next word

Representing Language to a Neural Network

N ] i
0.1 P 0.9
“deep” % “learning” V 0.8 — )Yy,
/ 0.6 Y 0.4
Neural networks cannot interpret words Neural networks require numerical inputs
I I ' R — 65191 Introduction to Deep Learning 1/19/2 |
ll Technology @ introtodeeplearningcom W @MITDeepleaming




Encoding Language for a Neural Network

~

% “learning”

_/

Neural networks cannot interpret words
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Neural networks require numerical inputs
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Embedding: transform indexes into a vector of fixed size.
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: cat
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|. Vocabulary:

Corpus of words
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I ' Institute of
Technology

G N
a —» |
cat —» 2
walk —» N

\: Yy

2. Indexing:
Word to index

0.9
0.2

0.4

(

?

I-th Index

One-hot embedding
"cat"=1[0,1,0,0,0,0]

<

run
walk

Learned embedding

dog .t

P S S R R S S R — —

day

sun

happy
sad

b

3. Embedding:

Index to fixed-sized vector

65191 Introduction to Deep Learning
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Handle Variable Sequence Lengths

The food was great

VS.

We visited a restaurant for lunch

VS.

VWe were hungry but cleaned the house before eating

I l l i i' e 6S191 Introduction to Deep Learning
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Model Long-Term Dependencies

"France i1s where | grew up, but | now live In Boston. | speak fluent ___.

‘g J'aime 6.5 1 91!5.

We need information from the distant past to accurately
predict the correct word.

I ' I i '- g 65191 Introduction to Deep Learning

wwwwww @ introtodeeplearningcom W @MITDeeplLeaming H.Suresh, 65191 2018. 1719721
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Capture Differences in Sequence Order

-

“ The food was good, not bad at all.
A~
—-—

VS.

The food was bad, not good at all.

65191 Introduction to Deep Learning H. Suresh, 6.5191 2018. 1/19/2




Sequence Modeling: Design Criteria

To model sequences, we need to:

|. Handle variable-length sequences

2. Track long-term dependencies

3. Maintain information about order 1

4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet
these sequence modeling design criteria

l l l i oo 65191 Introduction to Deep Learning
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Recall: Backpropagation in Feed Forward Models

Backpropagation algorithm:

|. Take the derivative (gradient) of the
loss with respect to each parameter

2. Shift parameters in order to
minimize |oss

I I l i i' g 65191 Introduction to Deep Learning

wwwwww @ introtodeeplearningcom W @MITDeeplLeaming 1119/21




RNNSs: Backpropagation T hrough Time

- Forward pass
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RNNs: Backpropagation [ hrough Time

- Forward pass

<— Backward pass _ . | L -\
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Standard RNIN Gradient Flow

ho

Whn

& Nz & >/ >
Wxn T Wxn T Wxn T Win
X0 X1 X2 b Xt
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Standard RNIN Gradient Flow

0 Whn
W n T W T Win T Win

X0 X1 X2 LR Xt

&

Computing the gradient wrt hy involves many factors of W,,;, + repeated gradient computation!

I I l e g 65191 Introduction to Deep Learning

Insti f - . . 1/19/2]
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Standard RNIN Gradient Flow: Exploding Gradients

e e 2

hO w,, ht

W n T W T Win T Win

X0 X1 X2 LR Xt

& 2

Computing the gradient wrt hy involves many factors of W,,;, + repeated gradient computation!

Many values > |
exploding gradients

Gradient clipping to
scale big gradients

l l l i n | SShEmte. 65191 Introduction to Deep Learmning

Institute of
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Standard RNIN Gradient Flow:Vanishing Gradients

s N ~
ho Whn
W n T W T Win T Win

X0 X1 X2 LR Xt

&

Computing the gradient wrt h, involves many factors of W},;,, + repeated gradient computation!

Many values < |:
vanishing gradients

|. Activation function
2. Weight initialization
3. Network architecture

I | I T 65191 Introduction to Deep Learning

Institute of

II Technology @ introtodeeplearning.com W @MITDeepleaming 1119721




The Problem of Long-Term Dependencies

Why are vanishing gradients a problem?

I I l i i' e 6S191 Introduction to Deep Learning
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The Problem of Long-Term Dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

I I l i n | SShEmte. 65191 Introduction to Deep Learning
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The Problem of Long-Term Dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

1

Errors due to further back time steps
have smaller and smaller gradients

I I l e 65191 Introduction to Deep Leamning

Institute of
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The Problem of Long-Term Dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

1

Errors due to further back time steps
have smaller and smaller gradients

1

Bias parameters to capture short-term
dependencies

I I ' am L SGhEmha. 6S191 Introduction to Deep Learning

Institute of
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The Problem of Long-Term Dependencies

"The clouds are inthe "
Why are vanishing gradients a problem?

Multiply many small numbers together

1

Errors due to further back time steps
have smaller and smaller gradients

1

Bias parameters to capture short-term
dependencies

I I ' am L SGhEmha. 6S191 Introduction to Deep Learning

Institute of

oy . . |
ll Technology @ introtodeeplearningcom W @MITDeepleaming 111972




The Problem of Long-Term Dependencies

"The clouds are inthe
Why are vanishing gradients a problem?

”~ ~

5" y y y4
Multiply many small numbers together J [ J [ J { J [ ]
- 6 @ = !
Errors due to further back time steps
have smaller and smaller gradients
Bias parameters to capture short-term
dependencies
Ill'- g 6S191 Introduction to Deep Learning 1719/
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The Problem of Long-Term Dependencies

"The clouds are inthe
Why are vanishing gradients a problem?

”~ ~

5" y y

Multiply many small numbers together
1 H I H H ]

f
Errors due to further back time steps ‘ @ . .

have smaller and smaller gradients

1

Bias parameters to capture short-term
dependencies

"l grew up In France, ... and | speak fluent____

Ill'- e g 6S191 Introduction to Deep Learning
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The Problem of Long-Term Dependencies

"The clouds are inthe "
Why are vanishing gradients a problem?

?0 ?1 5\'2 5;4

Multiply many small numbers together [ 1 1 1 H 1 ]
| 5 1 1
Errors due to further back time steps e *3 4

have smaller and smaller grad'ents “l grew up In France, ... and | speak fluent___ "

l 5;0 5;1 i Ve+1
. 1 1 @P 1
Bias parameters to capture short-term

dependencies [ ] [ ; H ; ]

&
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Trick #1:Activation Functions

10

- RelLU derivative

0.9
0.8

0.7

Using RelLU prevents

f'from shrinking the
gradients when x > 0

0.6

s sigmoid derivative

Illil- e~ g g 65191 Introduction to Deep Learning
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Trick #2: Parameter Initialization

SKIP 10 0
0 1 O
0 0 1

Gt i Gl

Inrtialize weights to identity matrix
by =

Initialize biases to zero

This helps prevent the weights from shrinking to zero.
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Solution #3: Gated Cells

/dea: use a more complex recurrent unit with gates to
control what information I1s passed through

4 B

gated cell
LSTM, GRU, etc.

\ 4

Long Short Term Memory (LSTMs) networks rely on a gated cell to
track information throughout many time steps.
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Standard RNN

In a standard RN, repeating modules contain a simple computation node

Vi
(he1 hy
tanh
Xt
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Long Short Term Memory (LSTMs)

LSTM modules contain computational blocks that control information flow

e

LSTM cells are able to track information throughout many timesteps

1F tf. keras.layers.LSTM(num units)
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Long Short Term Memory (LSTMs)

Information is added or removed through structures called gates

Gates optionally let information through, for example via a
sigmold neural net layer and pointwise multiplication
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Long Short Term Memory (LSTMs)

How do LSTMs work!
|) Forget 2) Store 3) Update 4) Output
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Long Short Term Memory (LSTMs)

|) Forget 2) Store 3) Update 4) Output
LSTMs forget irrelevant parts of the previous state
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Long Short Term Memory (LSTMs)

|) Forget 2) Store 3) Update 4) Output
LSTMs store relevant new information into the cell state
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Long Short Term Memory (LSTMs)

|) Forget 2) Store 3) Update 4) Output
LSTMs selectively update cell state values
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Long Short Term Memory (LSTMs)

|) Forget 2) Store 3) Update 4) Output
The output gate controls what information Is sent to the next time step

%t
I
[ tanh ]
Ot —X
he_4 h;
Xt
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Long Short Term Memory (LSTMs)

|) Forget 2) Store 3) Update 4) Output
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LSTM Gradient Flow

Uninterrupted gradient flow!

X1 X2 X3
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LSTMs: Key Concepts

|. Maintain a separate cell state from what 1s outputted

2. Use gates to control the flow of information
* Forget gate gets rid of irrelevant information
* Store relevant information from current input
* Selectively update cell state

* Output gate returns a filtered version of the cell state

3. Backpropagation through time with uninterrupted gradient flow
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Example Task: Sentiment Classification

Tweet sentiment classification

sentiment
<positive> &
% Ivar Hagendoorn ] . .
(" DivarHagenaoom — v
The @MIT Introduction to #Deeplearning is
definitely one of the best courses of its kind
currently available online
o B s R - N : .
Introtodeeplearning.com
uﬁ _’ ﬁ 12 Feb 201¢
" J " J V2 J "

‘o.: : Aﬂg&'S-Ca\le = 7'./ \‘\
3L @AngelsCave Follow ® 0
| _

Rer

| wouldn’t mind a bit of snow right now. We
haven’t had any in my bit of the Midlands this

. winter! :
love this class! (
A 65191 Introduction to Deep Learning
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Example Task: Sentiment Classification

] inputs = keras.Input(shape=(None,), dtype="int32")

X = layers.Embedding(max features, 16)(inputs) # define a l6-dimensional Embedding layer that acts on "input:
X = layers.LSTM(1l6)(x) # Add a l1l6-node LSTM that acts on the output of the Embedding layer

outputs = layers.Dense(l, activation="sigmoid")(x) # define a l-node sigmoid / classifier layer that acts on
model = keras.Model (inputs, outputs) # define the model as inputs -> outputs

model .summary ()

Model: "model"

Layer (type) Output Shape Param #
input_3 (Inputlayer)  [(Nome, Nome)] 0
embedding 1 (Embedding) (None, None, 16) 80000
lstm 1 (LSTM) (None, 16) 2112
dense 1 (Dense) (None, 1) 17

Total params: 82,129
Trainable params: 82,129
Non-trainable params: 0

: winter! :
love this class! erl
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Example Task: Sentiment Classification

inputs = keras.Input(shape=(None,), dtype="int32")

x = layers.Embedding(max features, 16)(inputs) # define a l6-dimensional Embedding layer that acts on "input
X = layers.Bidirectional(layers.LSTM(1l6))(x) # Add a 1l6-node bi-LSTM that acts on the output of the Embeddin
outputs = layers.Dense(l, activation="sigmoid")(x) # define a l-node sigmoid / classifier layer that acts on

model = keras.Model (inputs, outputs) # define the model as inputs -> outputs

model.summary ()

Model: "model 1"

Layer (type) Output Shape Param #
input_4 (InputLayer)  [(None, Nome)] 0
embedding 2 (Embedding) (None, None, 16) 80000
bidirectional (Bidirectional (None, 32) 4224
dense 2 (Dense) (None, 1) 33

Total params: 84,257
Trainable params: 84,257
Non-trainable params: 0

65191 Introduction to Deep Learning
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One big bi-LSTM success was ELMo — contextual embeddings

Hey ELMo, what's the embedding
of the word “stick”?

There are multiple possible
embeddings! Use it in a sentence.

Oh, okay. Here:
“Let’s stick to improvisation in this
skit”

Oh in that case, the embedding is:
-0.02, -0.16, 0.12,-0.1 ....etc




—mbedding of “stick” in “Let’s stick to” - Step

Forward Language Model

LSTM
Layer #2

LSTM
Layer #1

Embedding

Backward Language Model
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—mbedding of “stick” in “Let’s stick to” - Step #2

1- Concatenate hidden layers Forward Language Model Backward Language Model
[ e I B

1

?'»
|

2- Multiply each vector by
a weight based on the task

stick stick

3- Sum the (now weighted)
vectors

ELMo embedding of “stick” for this task in this context
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Example Task: Machine Translation

le chien mange

Seqguence-to-sequence, or seg2sed

\ J & J \ J & J \ J \\ J/

the dog eats [S chien
Encoder (English) Decoder (French)
e 6S191 Introduction to Deep Learning
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Example Task: Machine Translation

Potential Issues

le chien mange

Y Encoding bottleneck

I A R

the dog eats [S chien
Encoder (English) Decoder (French)
I I ' B e 65191 Introduction to Deep Learning
ll Technology @ introtodeeplearningcom W @MITDeepleaming

1/19/2]



Example Task: Machine Translation

Potential Issues

. | hi
¥ Encoding bottleneck © ek

') Slow, no parallelization \ \

dog eats [S chien

Encoder (English) Decoder (French)
e 6S191 Introduction to Deep Learning
I I l I I ;22:::.:; © Introtodeeplearning.com W @MITDeeplLeaming L




Example Task: Machine Translation

Potential Issues

HEm Massachusetts

' I Institute of
Technology

Y Encoding bottleneck e
') Slow, no parallelization
“2 Not long memory ’_L\
4 D s Ay 4 b
— —| P — +’
= a Y 9 VI

the dog eats
Encoder (English)
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Example Task: Machine Translation

le chien mange
Attention mechanisms in neural networks

provide learnable memory access

{ Attention J
0 I S i t
—_—  — —_— S —— —

the dog eats
Encoder (English) Decoder (French)
I I l e '”n::fjf:‘;‘e‘“ 65191 Introduction to Deep Leamning Sutskever+, NeurlPS 20 14; Bahdanau+ ICLR 2015; 171972
II Technol © introtodeeplearning.com W @MITDeeplLeamin Vaswani+, NeuriPS 2017.
ogy g g




Attention



Following images/videos from Jay Alammar, “The lllustrated
Transformer” and “Visualizing a Neural Machine Translation Model
(Mechanics of Seg2seqg Models with Attention”)



SEQUENCE TO SEQUENCE MODEL

(0 o o]

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

Je suis etudiant SEQUENCE TO SEQUENCE MODEL




SEQUENCE TO SEQUENCE MODEL

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

—




0.11

0.03
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0.81

-0.62

The context is a vector of floats. Later in this post we will visualize vectors in color by
assigning brighter colors to the cells with higher values.



INnput

Je 0.901 -0.651 -0.194 -0.822

suis -0.351 0.123 0.435 -0.200

etudiant

0.081 0.458 -0.400 0.480

We need to turn the input words into vectors before processing them. That
transformation is done using a word embedding algorithm. We can use pre-trained
embeddings or train our own embedding on our dataset. Embedding vectors of size 200
or 300 are typical, we're showing a vector of size four for simplicity.



Recurrent Neural Network

Time step #1:

An RNN takes two input vectors:
I
hidden input vector #1

state #0

hidden
state #0 I_> *)
-

input #1



Time step: Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL

Encoding Stage Decoding Stage

Encoder Decoder
RNN RNN

Je suis etudiant




Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encodinc Decodinc

Attention
Decoder
RNN

Encoder
RNN

Je suis etudiant



Attention at time step 4

’-----------------------------------------.

'-----------
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1. The attention decoder RNN takes in the embedding of the <END> token, and an initial decoder hidden state.

2. The RNN processes its inputs, producing an output and a new hidden state vector (n4). The output is discarded.

. Attention Step: We use the encoder hidden states and the h4 vector to calculate a context vector (C4) for this time
step.

. We concatenate h4 and C4 into one vector.

We pass this vector through a feedforward neural network (one trained jointly with the model).

The output of the feedforward neural networks indicates the output word of this time step.

Repeat for the next time steps

w

N o oA

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage Attention Decoding Stage




Encoder
hidden
state

hidden
Je state #1

" hidden

s u I s state #2

hidden

étUdiant state #3
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The transformer (“Attention is All You Need”)



INPUT OUTPUT

THE
TRANSFORMER

[Je SUis étudiant]—> —P[I am a student]

= Tl

_

OUTPUT | | am a student

ENCODERS » DECODERS

INPUT | Je suis etudiant



ENCODER

ENCODER

ENCODER

ENCODER

ENCODER

ENCODER

INPUT | Je  suis étudiant

OUTPUT | | am a student

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER



ENCODER ¢

Feed Forward Neural Network

Self-Attention




ENCODER

Feed Forward

Self-Attention

DECODER

Feed Forward

Encoder-Decoder Attention

Self-Attention



ENCODER

Feed Forward

Self-Attention

Je Suis etudiant



ENCODER #2 \\\.__________________________________________________________—//)

ENCODER #1

Feed Forward Feed Forward
Neural Network Neural Network

Self-Attention

x1 [ x2 (L
Thinking Machines



Layer:| 5 4| Attention:| Input - Input 4

B

The_ The_
animal_ animal_
didn_ didn_
t_ L
Cross_ Cross_

the_ the
street_ street_
because_ because_
it_ Nt
was_ was_
too_ too_
tire tire



Matrix math of self-attention - yada yada yada

Multi-headed attention - blah blah blah



EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

X1

t1

X1

ENCODER #1

ENCODER #0

X2

2

X2

SUls

X3‘

| &

etudiant

DECODER #1

DECODER #0



POSITIONAL 0.84 . 1 0.91 1
ENCODING
+ + +
EMBEDDINGS x:| | | | X2 || xs ol

INPUT Je SUIS etudiant
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ENCODER #2

ENCODER #1

Self-Attention

Add & Normalize

POSITIONAL
ENCODING

X1 X2

Thinking Machines
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