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Today

• Regularization 

• Early stopping 

• Dropout 

• L1/L2 weight regularization 

• Data augmentation 

• Optimizers / learning rates / 
adaptive learners

• Embeddings 

• Using pretrained embeddings 

• Training embedding layers 

• Visualizing embeddings with 
TensorBoard Projector 

• Received wisdom on deep learning.  

• Modeling sequence with recurrent 
neural nets (RNNs/LSTMs)
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Tomorrow

• Recurrent neural nets (RNNs) / LSTMs / bi-LSTMs / GRUs 

• Convolutional neural nets (CNNs) 

• Attention 

• Self-attention and transformers



Overfitting and Regularization

















Dropout can  
be thought of 
as ensembling 
or model 
averaging. 

Somewhat like 
random forests, 
bagging, boosting 



















Regularization applied to 

• Model structure / model averaging (e.g., dropout) 

• Parameters / weights (e.g., L1 or L2 penalty, weight decay) 

• Data -  

• Smoothing, filtering (related to convolution / kernel smoothing) 

• Noise / differential privacy (e.g., Laplacian mechanism) 

• Priors / pseudodata (e.g., Laplace L1 or Gaussian L2) 

• Data augmentation



L1/L2 Regularization, LASSO/Ridge Regression,  
Laplace/Gaussian Noise/Prior/Pseudodata



Data augmentation 

Source for NLP illustrations: Amit Chaudhary (2020) “A Visual Survey of Data Augmentation in NLP.” 



Dropout & Regularization (Text Classification Notebook 2)



Optimizers https://cs231n.github.io/neural-networks-3/ 

https://cs231n.github.io/neural-networks-3/


Received Wisdom on Building Neural Nets



Architecture

• Transfer learning, if possible, otherwise start with copying the architecture of 
others who have worked on the problem. 

• Experiment, and make decisions based on validation error. 

• Deeper (more layers) and thinner (fewer 	nodes per layer) networks are (a) more 
difficult to optimize, but (b) more likely to generalize well. 

• Some say start with 2 hidden layers, number of nodes a power of 2, second 
layer 1/2 the size of the first.



Training

• Always use early stopping. 

• Dropout is often advisable. < 50% on hidden layers, 0-20% on input layers 

• 5,000+ observations per category for acceptable performance (this advice is now too 
conservative for problems that can be informed by pretained embeddings or language models). 

• Use k-fold validation (instead of validation/train/test split) for smaller datasets. 

• Use as large a batch size as the GPU can handle. Start at 16 for really large models and increase 
in powers of 2. 

• For classification with unbalanced data, set class weights in your loss functions. 

• Monitor activation histograms. (e.g., TensorBoard)



Embeddings (Text Classification Notebooks 3 & 4)



Modeling sequence with recurrence






















































































