

Day 5 (6) - Introduction to Neural Nets / Deep Learning for NLP

Advanced Text as Data: Natural Language Processing Essex Summer School in Social Science Data Analysis

Burt L. Monroe (Instructor) & Sam Bestvater (TA) Pennsylvania State University

July 30 (Aug 2), 2021

Today

- Regularization
 - Early stopping
 - Dropout
 - L1/L2 weight regularization
 - Data augmentation
- Optimizers / learning rates / adaptive learners

- Embeddings
 - Using pretrained embeddings
 - Training embedding layers
 - Visualizing embeddings with TensorBoard Projector
- Received wisdom on deep learning.
- Modeling sequence with recurrent neural nets (RNNs/LSTMs)

Today

- Regularization
 - Early stopping
 - Dropout
 - L1/L2 weight regularization
 - Data augmentation
- Optimizers / learning rates / adaptive learners

- Embeddings
 - Using pretrained embeddings
 - Training embedding layers
 - Visualizing embeddings with TensorBoard Projector
- Received wisdom on deep learning.
- Modeling sequence with recurrent neural nets (RNNs/LSTMs)

Tomorrow

- Recurrent neural nets (RNNs) / LSTMs / bi-LSTMs / GRUs
- Convolutional neural nets (CNNs)
- Attention •
- Self-attention and transformers •

Overfitting and Regularization

Neural Networks in Practice: Overfitting

The Problem of Overfitting

Underfitting

Model does not have capacity to fully learn the data

ldeal fit

Overfitting

Too complex, extra parameters, does not generalize well

Regularization

Technique that constrains our optimization problem to discourage complex models

What is it?

Regularization

Why do we need it? Improve generalization of our model on unseen data

What is it? Technique that constrains our optimization problem to discourage complex models

Regularization I: Dropout

• During training, randomly set some activations to 0

Regularization I: Dropout

Regularization I: Dropout

During training, randomly set some activations to 0

- Typically 'drop' 50% of activations in layer
- Forces network to not rely on any I node

tf.keras.layers.Dropout(p=0.5)

Dropout can be thought of as ensembling or model averaging.

During training, randomly set some activations to 0

- Typically 'drop' 50% of activations in layer ٠
- Forces network to not rely on any I node ٠

Somewhat like random forests, bagging, boosting

Regularization I: Dropout

tf.keras.layers.Dropout(p=0.5)

• Stop training before we have a chance to overfit

Training Iterations

6.S191 Introduction to Deep Learning introtodeeplearning.com Signature @MITDeepLearning

• Stop training before we have a chance to overfit

• Stop training before we have a chance to overfit

• Stop training before we have a chance to overfit

Training Iterations

6.S191 Introduction to Deep Learning introtodeeplearning.com Signature @MITDeepLearning

• Stop training before we have a chance to overfit

• Stop training before we have a chance to overfit

• Stop training before we have a chance to overfit

Regularization applied to

- Model structure / model averaging (e.g., dropout)
- Parameters / weights (e.g., L1 or L2 penalty, weight decay)
- Data -
 - Smoothing, filtering (related to convolution / kernel smoothing)
 - Noise / differential privacy (e.g., Laplacian mechanism)
 - Priors / pseudodata (e.g., Laplace L1 or Gaussian L2)
 - Data augmentation

L1/L2 Regularization, LASSO/Ridge Regression, Laplace/Gaussian Noise/Prior/Pseudodata

Data augmentation

Source for NLP illustrations: Amit Chaudhary (2020) "A Visual Survey of Data Augmentation in NLP.

Dropout & Regularization (Text Classification Notebook 2)

Optimizers

https://cs231n.github.io/neural-networks-3/

Received Wisdom on Building Neural Nets

Architecture

- others who have worked on the problem.
- Experiment, and make decisions based on validation error.
- difficult to optimize, but (b) more likely to generalize well.
- layer 1/2 the size of the first.

• Transfer learning, if possible, otherwise start with copying the architecture of

Deeper (more layers) and thinner (fewer nodes per layer) networks are (a) more

Some say start with 2 hidden layers, number of nodes a power of 2, second

Training

- Always use early stopping.
- Dropout is often advisable. < 50% on hidden layers, 0-20% on input layers
- 5,000+ observations per category for acceptable performance (this advice is now too conservative for problems that can be informed by pretained embeddings or language models).
- Use k-fold validation (instead of validation/train/test split) for smaller datasets.
- Use as large a batch size as the GPU can handle. Start at 16 for really large models and increase in powers of 2.
- For classification with unbalanced data, set class weights in your loss functions.
- Monitor activation histograms. (e.g., TensorBoard)

Embeddings (Text Classification Notebooks 3 & 4)

Modeling sequence with recurrence

Sequence Modeling Applications

One to One **Binary Classification**

x

"Will I pass this class?" Student \rightarrow Pass?

Massachusetts

Institute of

Technology

Many to One Sentiment Classification

Ivar Hagendoorn IlvarHagendoorn

Follow

The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online introtodeeplearning.com

12:45 PM - 12 Feb 2018

introtodeeplearning.com

"A baseball player throws a ball."

6.S191 Introduction to Deep Learning MITDeepLearning

Many to Many **Machine Translation**

1/19/21

The Perceptron Revisited

Feed-Forward Networks Revisited

 $\mathbf{x} \in \mathbb{R}^m$

6.S191 Introduction to Deep Learning introtodeeplearning.com
@MITDeepLearning

Feed-Forward Networks Revisited

$x_t \in \mathbb{R}^m$

 x_t

$\hat{y}_t \in \mathbb{R}^n$

6.S191 Introduction to Deep Learning introtodeeplearning.com Signature @MITDeepLearning

6.S191 Introduction to Deep Learning introtodeeplearning.com
@MITDeepLearning

introtodeeplearning.com

introtodeeplearning.com

Recurrent Neural Networks (RNNs)

RNNs have a state, h_t , that is updated at each time step as a sequence is processed

6.5191 Introduction to Deep Learning @MITDeepLearning

6.S191 Introduction to Deep Learning introtodeeplearning.com
@MITDeepLearning

Input Vector χ_t

6.S191 Introduction to Deep Learning introtodeeplearning.com
@MITDeepLearning

Update Hidden State $h_t = \tanh(\boldsymbol{W}_{hh}^T h_{t-1} + \boldsymbol{W}_{xh}^T x_t)$

Input Vector χ_t

6.S191 Introduction to Deep Learning MITDeepLearning

Output Vector $\hat{y}_t = W_{hy}^T h_t$

Update Hidden State $h_t = \tanh(W_{hh}^T h_{t-1} + W_{xh}^T x_t)$

Input Vector x_t

6.S191 Introduction to Deep Learning MITDeepLearning

RNNs: Computational Graph Across Time

Massachusetts Institute of Technology

Represent as computational graph unrolled across time

Massachusetts Institute of Technology

RNN Implementation in TensorFlow

tf.keras.layers.SimpleRNN(rnn_units)

6.S191 Introduction to Deep Learning odeeplearning.com Solution @MITDeepLearning

1/19/21

RNNs for Sequence Modeling

One to One "Vanilla" NN Binary classification

Many to One Sentiment Classification

... and many other architectures and applications

One to Many Text Generation Image Captioning

6.S191 Introduction to Deep Learning @MITDeepLearning

Sequence Modeling: Design Criteria

To model sequences, we need to:

- Handle variable-length sequences
- 2. Track long-term dependencies
- Maintain information about order 3.
- Share parameters across the sequence 4.

Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

6.S191 Introduction to Deep Learning @MITDeepLearning

RNN

"This morning I took my cat for a walk."

given these words

- "This morning I took my cat for a walk."

"This morning I took my cat for a walk." given these words predict the next word

"This morning I took my cat for a walk." given these words predict the next word

Representing Language to a Neural Network

Neural networks cannot interpret words

Neural networks require numerical inputs

6.S191 Introduction to Deep Learning MITDeepLearning

"This morning I took my cat for a walk." given these words predict the next word

Representing Language to a Neural Network

Neural networks cannot interpret words

Neural networks require numerical inputs

6.S191 Introduction to Deep Learning MITDeepLearning

Encoding Language for a Neural Network

Neural networks cannot interpret words

Embedding: transform indexes into a vector of fixed size.

Institute of

Technology

Neural networks require numerical inputs

3. Embedding:

Index to fixed-sized vector

Handle Variable Sequence Lengths

The food was great

We visited a restaurant for lunch

We were hungry but cleaned the house before eating

VS.

VS.

Model Long-Term Dependencies

"France is where I grew up, but I now live in Boston. I speak fluent _____."

We need information from the distant past to accurately predict the correct word.

Massachusetts Institute of Technology

Capture Differences in Sequence Order

The food was good, not bad at all.

The food was bad, not good at all.

VS.

6.S191 Introduction to Deep Learning MITDeepLearning

H. Suresh, 6.S191 2018. 1/19/21

Sequence Modeling: Design Criteria

To model sequences, we need to:

- Handle variable-length sequences
- 2. Track long-term dependencies
- Maintain information about order 3.
- Share parameters across the sequence 4.

Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

6.S191 Introduction to Deep Learning @MITDeepLearning

RNN

Recall: Backpropagation in Feed Forward Models

Backpropagation algorithm:

- Take the derivative (gradient) of the loss with respect to each parameter
- Shift parameters in order to 2. minimize loss

introtodeeplearning.com

Massachusetts

Institute of

Technology

Standard RNN Gradient Flow

Standard RNN Gradient Flow

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Standard RNN Gradient Flow: Exploding Gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Massachusetts Institute of Technology

Standard RNN Gradient Flow: Vanishing Gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1: exploding gradients Gradient clipping to scale big gradients

6.S191 Introduction to Deep Learning introtodeeplearning.com

Why are vanishing gradients a problem?

Why are vanishing gradients a problem?

Multiply many small numbers together

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the ____"

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"I grew up in France, ... and I speak fluent____"

The Problem of Long-Term Dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"I grew up in France, ... and I speak fluent____"

6.S191 Introduction to Deep Learning MITDeepLearning

