
Day 5 (6) - Introduction to Neural Nets / Deep Learning for NLP

Advanced Text as Data: Natural Language Processing

Essex Summer School in Social Science Data Analysis

Burt L. Monroe (Instructor) & Sam Bestvater (TA)

Pennsylvania State University

July 30 (Aug 2), 2021

Today

• Regularization

• Early stopping

• Dropout

• L1/L2 weight regularization

• Data augmentation

• Optimizers / learning rates /
adaptive learners

• Embeddings

• Using pretrained embeddings

• Training embedding layers

• Visualizing embeddings with
TensorBoard Projector

• Received wisdom on deep learning.

• Modeling sequence with recurrent
neural nets (RNNs/LSTMs)

Today

• Regularization

• Early stopping

• Dropout

• L1/L2 weight regularization

• Data augmentation

• Optimizers / learning rates /
adaptive learners

• Embeddings

• Using pretrained embeddings

• Training embedding layers

• Visualizing embeddings with
TensorBoard Projector

• Received wisdom on deep learning.

• Modeling sequence with recurrent
neural nets (RNNs/LSTMs)

Tomorrow

• Recurrent neural nets (RNNs) / LSTMs / bi-LSTMs / GRUs

• Convolutional neural nets (CNNs)

• Attention

• Self-attention and transformers

Overfitting and Regularization

Dropout can
be thought of
as ensembling
or model
averaging.

Somewhat like
random forests,
bagging, boosting

Regularization applied to

• Model structure / model averaging (e.g., dropout)

• Parameters / weights (e.g., L1 or L2 penalty, weight decay)

• Data -

• Smoothing, filtering (related to convolution / kernel smoothing)

• Noise / differential privacy (e.g., Laplacian mechanism)

• Priors / pseudodata (e.g., Laplace L1 or Gaussian L2)

• Data augmentation

L1/L2 Regularization, LASSO/Ridge Regression,
Laplace/Gaussian Noise/Prior/Pseudodata

Data augmentation

Source for NLP illustrations: Amit Chaudhary (2020) “A Visual Survey of Data Augmentation in NLP.”

Dropout & Regularization (Text Classification Notebook 2)

Optimizers https://cs231n.github.io/neural-networks-3/

https://cs231n.github.io/neural-networks-3/

Received Wisdom on Building Neural Nets

Architecture

• Transfer learning, if possible, otherwise start with copying the architecture of
others who have worked on the problem.

• Experiment, and make decisions based on validation error.

• Deeper (more layers) and thinner (fewer 	nodes per layer) networks are (a) more
difficult to optimize, but (b) more likely to generalize well.

• Some say start with 2 hidden layers, number of nodes a power of 2, second
layer 1/2 the size of the first.

Training

• Always use early stopping.

• Dropout is often advisable. < 50% on hidden layers, 0-20% on input layers

• 5,000+ observations per category for acceptable performance (this advice is now too
conservative for problems that can be informed by pretained embeddings or language models).

• Use k-fold validation (instead of validation/train/test split) for smaller datasets.

• Use as large a batch size as the GPU can handle. Start at 16 for really large models and increase
in powers of 2.

• For classification with unbalanced data, set class weights in your loss functions.

• Monitor activation histograms. (e.g., TensorBoard)

Embeddings (Text Classification Notebooks 3 & 4)

Modeling sequence with recurrence

