PennState

College of the
Liberal Arts

'; ;o,
O
?

C-SobA

Center for Social Data Analytics

Day 3 - Word Embeddings

Advanced lext as Data: Natural Language Processing
Essex Summer School in Social Science Data Analysis

Burt L. Monroe (Instructor) & Sam Bestvater (TA)
Pennsylvania State University

July 28, 2021

Slides are mostly those of Jurafsky and Martin for Speech and
Language Processing, 3rd edition (all those with light brown border on
eft)

Where we're headed: word embeddings

- The old (Mikolov, et al. 2013 — word2vec) new hotness in NLP / text-as-data.

Represent each word as a vector of real numbers, a location in n-dimensional space.

Premise: “You shall know a word by the company it keeps.” (Firth 1957)

-+ Goal: words that appear in the same “contexts” should lbe near each other, have similar vector
representations.

- Context is typically defined as a window of neighboring words.

the quick brown fox jumps over the lazy dog

([Context words], focus word) with window size of 1:

([the, brown], quick), ([quick, fox], brown ...

Desiderata

What should a theory of word meaning do for us?
Let's look at some desiderata

From lexical semantics, the linguistic study of word
meaning

Lemmas and senses

lemma

/
mouse (N)

__~1. any of numerous small rodents...
— 2. a hand-operated device that controls
a CUrsor...

sense

Modified from the online thesaurus WordNet

A sense or “concept” is the meaning component of a word
Lemmas can be polysemous (have multiple senses)

Relations between senses: Synonymy

Synonyms have the same meaning in some or all
contexts.
o filbert / hazelnut

> couch / sofa

> big / large

> automobile / car
o vomit / throw up
> water / H,0

Relations between senses: Synonymy

Note that there are probably no examples of perfect
synonymy.
> Even if many aspects of meaning are identical

o Still may differ based on politeness, slang, register, genre,
etc.

Relation: Synonymy?

water/H,0

"H,0" in a surfing guide?
big/large

my big sister = my large sister

Relation: Similarity

Words with similar meanings. Not synonyms, but sharing
some element of meaning

car, bicycle

cow, horse

Ask humans how similar 2 words are

word |wordz_|simiarity

vanish disappear 9.8

behave obey 7.3

belief Impression 5.95
muscle bone 3.65
modest flexible 0.98

hole agreement 0.3

SimLex-999 dataset (Hill et al., 2015)

Relation: Word relatedness

Also called "word association”

Words can be related in any way, perhaps via a semantic
frame or field

o coffee, tea: similar
- coffee, cup: related, not similar

Semantic field

Words that
o cover a particular semantic domain

o pear structured relations with each other.

hospitals

surgeon, scalpel, nurse, anaesthetic, hospital
restaurants

waiter, menu, plate, food, menu, chef
houses

door, roof, kitchen, family, bed

Relation: Antonymy

Senses that are opposites with respect to only one
feature of meaning

Otherwise, they are very similar!

dark/light short/long fast/slow rise/fall
hot/cold up/down in/out

More formally: antonyms can
> define a binary opposition or be at opposite ends of a scale
- long/short, fast/slow

o> Be reversives:
o rise/fall, up/down

Connotation (sentiment)

* Words have affective meanings

* Positive connotations (happy)
* Negative connotations (sad)

* Connotations can be subtle:
* Positive connotation: copy, replica, reproduction

* Negative connotation: fake, knockoff, forgery

* Evaluation (sentiment!)
* Positive evaluation (great, love)
* Negative evaluation (terrible, hate)

Connotation
Osgood et al. (1957)
Words seem to vary along 3 affective dimensions:
> valence: the pleasantness of the stimulus
> arousal: the intensity of emotion provoked by the stimulus
> dominance: the degree of control exerted by the stimulus

Valence love 1.000 toxic 0.008
happy 1.000 nightmare 0.005
Arousal elated 0.960 mellow 0.069
frenzy 0.965 napping 0.046
Dominance powerful 0.991 weak 0.045
leadership 0.983 empty 0.081

Values from NRC VAD Lexicon (Mohammad 2018)

So far

Concepts or word senses

> Have a complex many-to-many association with words (homonymy,
multiple senses)

Have relations with each other
o Synonymy

> Antonymy

o Similarity

o Relatedness

o Connotation

Vector semantics

Computational models of word meaning

Can we build a theory of how to represent word
meaning, that accounts for at least some of the
desiderata?

We'll introduce vector semantics
The standard model in language processing!

Handles many of our goals!

Ludwig Wittgenstein

Pl #43:
"The meaning of a word is its use in the language”

Let's define words by their usages

One way to define "usage":

words are defined by their environments (the words around them)

Zellig Harris (1954):

If A and B have almost identical environments we say that they
are synonyms.

What does recent English borrowing ongchoi mean?

Suppose you see these sentences:
* Ong choi is delicious sautéed with garlic.
* Ong choi is superb over rice
* Ong choi leaves with salty sauces

And you've also seen these:
* ...spinach sauteed with garlic over rice
* Chard stems and leaves are delicious
* Collard greens and other salty leafy greens

Conclusion:

> Ongchoi is a leafy green like spinach, chard, or collard greens
> We could conclude this based on words like "leaves" and "delicious" and "sauteed"

Ongchoi: Ipomoea aquatica "Water Spinach”

WY . T -
4 “‘ ot P Lo, -

"II >‘ ' N - § fl' _' b .' . <

kangkong

rau muong

Yamaguchi, Wikimedia Commons, public domain

|[dea 1: Defining meaning by linguistic distribution

Let's define the meaning of a word by its
distribution in language use, meaning its
neighboring words or grammatical environments.

|[dea 2: Meaning as a point in space (Osgood et al. 1957)

3 affective dimensions for a word
> valence: pleasantness
> arousal: intensity of emotion
> dominance: the degree of control exerted

Valence

Arousal

Dominance

Nappy

elated
frenzy
powerful

leadership

1.000
1.000
0.960
0.965
0.991
0.983

toxic

nightmare

mellow
napping
weak

empty

0.008
0.005
0.069
0.046
0.045
0.081

NRC VAD Lexicon
(Mohammad 2018)

Hence the connotation of a word is a vector in 3-space

|[dea 1: Defining meaning by linguistic distribution

|[dea 2: Meaning as a point in multidimensional space

Defining meaning as a point in space based on distribution

Each word = a vector (not just "good" or "w,:")
Similar words are "nearby in semantic space”

We build this space automatically by seeing which words are
nearby in text

notgood. | had
to by o dislike T
that now are incredibly bad
a | you
than ith .
very good iIncredibly good
amazing fantastic

ifi . wonderful
terrific nice

good

We define meaning of a word as a vector

Called an "embedding"” because it's embedded into a
space (see textbook)

The standard way to represent meaning in NLP

Every modern NLP algorithm uses embeddings as
the representation of word meaning

Fine-grained model of meaning for similarity

Intuition: why vectors?

Consider sentiment analysis:

> With words, a feature is a word identity

> Feature 5: 'The previous word was "terrible"
° requires exact same word to be in training and test

> With embeddings:
> Feature is a word vector
> 'The previous word was vector [35,22,17...]
> Now in the test set we might see a similar vector [34,21,14]
> We can generalize to similar but unseen words!!!

We'll discuss 2 kinds of embeddings
tf-idf

o |Information Retrieval workhorse!
o A common baseline model
o Sparse vectors

o Words are represented by (a simple function of) the counts of nearby
words

Word2vec
o Dense vectors

o Representation is created by training a classifier to predict whether a
word is likely to appear nearby

> Later we'll discuss extensions called contextual embeddings

Words and vectors

Term-document matrix

Each document is represented by a vector of words

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 3
good 14 30 62 39
fool 36 38 1 4
wit 0 15 2 3

Visualizing document vectors

40 —
Henry V [4,13]
N 15
IS
S 107/ Julius Caesar /1,7]
> / As You Like It /36,1] Twelfth Night /58,0]

5 10 15 20 25 30 35 40 45 50 55 60
fool

Vectors are the basis of information retrieval

As You Like It Twelfth Night Julius Caesar Henry V

4
3

battle 1 0 13
good 14 30

fool 36 58

wit 0 15

39
Vectors are similar for the two comedies

But comedies are different than the other two
Comedies have more fools and wit and fewer battles.

|[dea for word meaning: Words can be vectors too!!!

As You Like It Twelfth Night Julius Caesar Henry V

battle

good
fool
wit

battle is "the kind of word that occurs in Julius Caesar and Henry V"

fool is "the kind of word that occurs in comedies, especially Twelfth Night"

More common: word-word matrix
(or "term-context matrix")

Two words are similar in meaning if their context vectors are similar

1s traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

aardvark ... computer data result pie sugar
cherry 0 2 3 9 442 25
strawberry 0 0 0 1 60 19

digital 0 1670 1633 85 5 4

information 0 3325 3982 378 S 13

computer

Information
[3982,3325]
digital
[1683,1670]

1000 2000 3000 4000
data

Cosine for computing word similarity

Computing word similarity: Dot product and cosine

The dot product between two vectors is a scalar:

N

dot product(v,w) =v-w = Zviwi = Viw] +Vvawy + ... + VNWN
i=1

The dot product tends to be high when the two
vectors have large values in the same dimensions

Dot product can thus be a useful similarity metric
between vectors

Problem with raw dot-product

Dot product favors long vectors

Dot product is higher if a vector is longer (has higher
values in many dimension)

Vector length: v

V| = \ szz

=1

Frequent words (of, the, you) have long vectors (since
they occur many times with other words).

So dot product overly favors frequent words

Alternative: cosine for computing word similarity

N

E ViWi

_ =1
‘ N N

VN

=1

<l

o W
cosine(V,w) = T =
5

Based on the definition of the dot product between two vectors a and b

a-b = |a||b|cosB
a-b

— co0s6
a||b

Cosine as a similarity metric

-1: vectors point in opposite directions

+1: vectors point in same directions

0: vectors are orthogonal

But since raw frequency values are non-negative, the
cosine for term-term matrix vectors ranges from 0-1

Visualizing cosines
(well, angles)

0= cherry

iInformation

digital

| | l | | |
500 1000 1500 2000 2500 3000

Dimension 1: ‘pie’

Dimension 2: ‘computer’

tf-idf

But raw frequency is a bad representation

* The co-occurrence matrices we have seen represent each
cell by word frequencies.

* Frequency is clearly useful; if sugar appears a lot near
apricot, that's useful information.

* But overly frequent words like the, it, or they are not very
informative about the context

* |t's a paradox! How can we balance these two conflicting
constraints?

Two common solutions for word weighting

tf-idf: tf-idf value for word t in document d:
Wt,d — tft,d X ldft

Words like "the" or "it" have very low idf

PMI: (Pointwise mutual information)
p(wi,w3)
p(w1)p(wz)

© PM'(Wl, Wz) — log

See if words like "good" appear more often with "great" than
we would expect by chance

Term frequency (tf)

tf, ,= count(t,d)
Instead of using raw count, we squash a bit:

tf; ,= log,olcount(t,d)+1)

Document frequency (df)

df, is the number of documents t occurs in.

(note this is not collection frequency: total count across
all documents)

"Romeo" is very distinctive for one Shakespeare play:

Collection Frequency Document Frequency
Romeo 113 1

action 113 31

Inverse document frequency (idf)

Word df idf

Romeo 1 1.57

N salad 2 1.277
df; = log, Falstaff 4 0.967
dft forest 12 0.489
battle 21 0.246
N is the total number of documents wit 34 0.03/
. . fool 36 0.012
in the collection
good 37 0O

sweet 37 0

Final tf-idf weighted value for a word
Wt,d — tft,d X ldft

Raw counts:
As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 30 62 39
fool 36 38 1 4
wit 20 15 2 3
tf-idf:
As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083

wit 0.049 0.044 0.018 0.022

Pointwise Mutual Information

Pointwise mutual information:
Do events x and y co-occur more than if they were independent?

PMI(X,Y) = log, Pfgg()y)

PMI between two words: (Church & Hanks 1989)
Do words x and y co-occur more than if they were independent?

P(word,word,)
P(word,)P(word,)

PMI(word,,word,) = log,

Positive Pointwise Mutual Information

o PMI ranges from —oo to + oo
o But the negative values are problematic
> Things are co-occurring less than we expect by chance

> Unreliable without enormous corpora

> |Imagine wl and w2 whose probability is each 10°
> Hard to be sure p(w1,w2) is significantly different than 102

> Plus it’s not clear people are good at “unrelatedness”
> So we just replace negative PMI values by O

> Positive PMI (PPMI) between word1 and word2:
P(word,,word,))

, 0
P(word,)P(word,)

PPMI(word,,word,) = max (logz

Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts)

t;; is # of times w; occurs in context ¢

C 14 computer data result pie sugar count(w)
E £ E £ cherry 2 3 9 442 25 486
i ~ / “ / strawberry 0 0 | 60 19 30
Pii=w—c Dis = WJ = P«i=c digital 1670 1683 85 5 4 3447
information 3325 3982 378 5 13 7703
Ji EEfij Ezfif
i=1 j=1 i=1 j=1 i=1 j=1 count(context) 4997 5673 473 512 61 11716
pmi.. 1 pmi. >0
mi.. = 1o / mi.. = < i ij
P ij g2 PP] .
DD+ 0 otherwise

computer data result pie sugar count(w)
cherry 2 8 9 4472 25 486
]l;] strawberry 0 0 1 60 19 80
Pii=w—c digital 1670 1683 85 5 4 3447
E E f information 3325 3982 378 5 13 7703
' Y count(context) 4997 5673 473 512 61 11716
=1 j=
¢ W
p(w=information,c=data) = 3982/111716 =.3399 zfl] Ef
ij
o(w=information) = 7703/11716 =.6575 p(w;) j=1 p(c.) = i
;) =
o(c=data) = 5673/11716 = .4842 N / N
p(w,context) p(w)
computer data result pie sugar p(w)
cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068
digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575
p(context) 0.4265 0.4842 0.0404 0.0437 0.0052

pmi. =log,
PP+

p(w,context) p(w)

computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415

strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942

information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575
p(context) 0.4265 0.4842 0.0404 0.0437 0.0052

Resulting PPMI matrix (negatives replaced by 0)

pmi(information,data) = log, (.3399 / (.6575*.4842)) =.0944

computer data result pie sugar
cherry 0 0 4.38 3.30
strawberry 0 0 4.10 5.51
digital 0.18 0.01 0 0 0
information 0.02 0.09 0.28 0 0

Weighting PMI

PMI is biased toward infrequent events
> Very rare words have very high PMI values

Two solutions:
> @Give rare words slightly higher probabilities
> Use add-one smoothing (which has a similar effect)

Weighting PMI: Giving rare context words slightly
higher probability

Raise the context probabilitiesto a = 0.75:

PPMI, (w,c) = max(log, P(PW()VJV;O(:EC) 0)
Pule) = S T

This helps because P,(c) > P(c) for rare ¢
Consider two events, P(a) = .99 and P(b)=.01

0175
Pa (a) —

=97 Py(b) = ——23—— = .03

99:754.01:7°

word2vec

Sparse versus dense vectors

tf-idf (or PMI) vectors are
> long (length |V|= 20,000 to 50,000)
> sparse (most elements are zero)

Alternative: learn vectors which are
> short (length 50-1000)

> dense (most elements are non-zero)

Figure 6.2. Whereas word representations obtained from one-hot encoding or hashing
are sparse, high-dimensional, and hardcoded, word embeddings are dense, relatively
low-dimensional, and learned from data.

o

One-hot word vectors: Word embeddings:
- Sparse - Dense
- High-dimensional - Lower-dimensional

- Hardcoded - Leamed from data

Sparse versus dense vectors

Why dense vectors?

> Short vectors may be easier to use as features in machine
learning (fewer weights to tune)

> Dense vectors may generalize better than explicit counts

> Dense vectors may do better at capturing synonymy:
o car and automobile are synonyms; but are distinct dimensions

> a word with car as a neighbor and a word with automobile as a
neighbor should be similar, but aren't

> |n practice, they work better

Common methods for getting short dense vectors

“Neural Language Model”-inspired models
> Word2vec (skipgram, CBOW), GloVe

Singular Value Decomposition (SVD)
o A special case of this is called LSA — Latent Semantic Analysis

Alternative to these "static embeddings":
* Contextual Embeddings (ELMo, BERT)
 Compute distinct embeddings for a word in its context
 Separate embeddings for each token of a word

Simple static embeddings you can download!

Word2vec (Mikolov et al)
https://code.google.com/archive/p/word2vec/

GloVe (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

Word2vec

Popular embedding method
Very fast to train

Code available on the web
ldea: predict rather than count

Word2vec provides various options. We'll do:
skip-gram with negative sampling (SGNS)

Word2vec

Instead of counting how often each word w occurs near "apricot”

> Train a classifier on a binary prediction task:
> |s w likely to show up near "apricot"?

We don’t actually care about this task
> But we'll take the learned classifier weights as the word embeddings

Big idea: self-supervision:
> A word c that occurs near apricot in the corpus cats as the gold "correct
answer" for supervised learning

> No need for human labels
> Bengio et al. (2003); Collobert et al. (2011)

If one wanted to give an example of an NLP application, one of the best examples would be the next-word prediction
feature of a smartphone keyboard. It's a feature that billions of people use hundreds of times every day.

7/ Thou shalt

Next-word prediction is a task that can be addressed by a language model. A language model can take a list of words
(let’s say two words), and attempt to predict the word that follows them.

In the screenshot above, we can think of the model as one that took in these two green words (thou shalt) and
returned a list of suggestions (“not” being the one with the highest probability):

output/label

Source: Jay Alammar, 2019, “The lllustrated word2vec

Input Qutput

Features Prediction

0% @ aardvark

0% | aarhus

Trained Language Model 0.1% aaron

Task:
Predict the next word

40% not

0.01 | zyzzyva

The output of the neural language model is a probability score for all the words the model knows. We're referring to the probability as a
percentage here, but 40% would actually be represented as 0.4 in the output vector.

Source: Jay Alammar, 2019, “The lllustrated word2vec

Thou shalt notmake a machine in the likeness of a human mind

Sliding window across running text Dataset

nput 1 | Input 2 | output

thou shalt not make a machine in the ... thou shalt not
Thod shalt not make B machine in the likeness of a human mind
Sliding window across running text Dataset

input 1 Input 2 | output

thou shalt not make a machine N the ... thou shalt not

thou shalt not make a machine N the shalt not make

Thou shalt not makehe likeness of a human mind

Sliding window across running text Dataset
nput 1 | Input 2 | output
thou shalt not make machine in the thou shalt not
thou shalt not make machine in the shalt not make
thou shalt not make machine in the not make a
thou shalt not make machine in the make a machine
thou shalt not make machine in the a machine Ig

Source: Jay Alammar, 2019, “The lllustrated word:

Jay was hit by a

Source: Jay Alammar, 2019, “The lllustrated word2vec

Jay was hit by a DUS

Source: Jay Alammar, 2019, “The lllustrated word2vec

word2vec - skipgram with negative sampling (SGNS)

Thou shalt not make a lnachine in the likeness of a human mind

thou shalt not — make -machine in the ... iInput word target word
not thou
not shalt
not make

skipgrams
Tho the likeness of a human mind
thou shalt not make a machine in the .. input word | target word
not thou
thou shalt not make @ a - in the .. Not shalt
not make
Not a
make shalt
make Not
MakKe d

make
Source: Jay Alammar, 2019, “The lllustrated word2vec

nput word | target word
not thou
not shalt
not make
not a
make shalt
make not
make a
make machine
a not
a make
a machine
a N
machine make
machine a
machine in
machine the
in a
in machine
in the
in likeness

Untrained Model
NO{ =—p

Task:
Predict neighbouring word

Source: Jay Alammar, 2019, “The lllustrated word2vec

0 | aardvark

0 | aarhus

Untrained Model 0.001 aaron

NO{ =—p

Task:
Predict neighbouring word

faco
0.001 thou
1) Look up 2) Calculate 3) Project -
embeddings prediction to output |
vocabulary 0.0001 zyzzyva

Source: Jay Alammar, 2019, “The lllustrated word2vec

Actual Modael

Target Prediction
0 0 aardvark
0 0 aarnus
0 0.001 aaron
0 0.4 faco
1 0.001 thou
0 0.0001 = zyzzyva

Source: Jay Alammar, 2019, “The lllustrated word2vec

Actual Model

o —rror
Target Prediction

0 0 aardvark 0
0 0 aarhus 0
0 0.001 aaron -0.001
0 0.4 taco -0.4
1 0.001 thou 0.999
0 0.0001 = zyzzyva -0.0001

Source: Jay Alammar, 2019, “The lllustrated word2vec

Actual Model

o —rror
Target Prediction
0 ~ 0 aardvark _ 0
0 0 aarhus 0
0 0.001 aaron -0.001
Not =—— | Untrained Model -
0.001 | thou 0.999
0 U D date zZyzzyva -0.0001
Model

Parameters

Source: Jay Alammar, 2019, “The lllustrated word2vec

Change Task from

Untrained Model

NOt — —p thou

Task:
Predict neighbouring word

And switch it to a model that takes the input and output word, and outputs a score indicating if they’re neighbors or not
(O for “not neighbors”, 1 for “neighbors”).

To:
NOT —p Untrained Model
Task: — 090
thou—» -

Are the two words neighbours?

Source: Jay Alammar, 2019, “The lllustrated word2ve

iInput word | target word iInput word | output word | target

not thou not thou 1
not shalt not shalt 1
not make not make 1
not a not a 1
make shalt make shalt 1
make not make not 1
make a make a 1
make machine make machine 1

Smartass Model

NOL =— Task:
Are the two words neighbours?
thou—»

def model(in, out):
return 1.0

Source: Jay Alammar, 2019, “The lllustrated word?2\

Pick randomly from vocabulary
(random sampling)

Word Count Probability
input word | output word | target

aardvark
| aarhus
not thou 1
N aaron

not aaron 0
not taco 0
not shalt 1

taco

thou
not make 1

zyzzyva

Source: Jay Alammar, 2019, “The lllustrated word2vec

r

\

Embedding Context
aardvark aardvark
aarhus aarhus
@ aaron aaron
7
.z.\,.'zzvva .z.\,;zzvva
\ et'nbedding_siz'e e;nbedding_siz'e j
dataset model
input word | output word | target r \
not thou 1
not aaron 0
not taco 0
not shalt 1
not mango 0
not finglonger 0
not make 1 K j
not plumbus 0
Source: Jay Alammar, 2019, “The lllustrated word2ve

(

Embedding

aardvark
aarhus
aaron

o

zyzzyva

Context

Look up
embeddings

aardvark

aarhus

I o
o

zyzzyva

not
> —

aaron

taco

thou

iInput word

output word | target input ® output. sigmoid()
thou IR 1 0.2 0.55
aaron [NEEEE 0 -1.11 0.25
taco N 0 0.74 0.68
(| h
P aaron
_not I taco
S0 thou

Error
0.45
-0.25
-0.68

Update
Model
Parameters

Source: Jay Alammar, 2019, “The lllustrated word2ve

Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word ¢
as positive examples.

2. Randomly sample other words in the lexicon to get
negative examples

3. Use logistic regression to train a classifier to distinguish
those two cases

4. Use the learned weights as the embeddings

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

..lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] ¢c3 ¢4

Skip-Gram Classifier

(assuming a +/- 2 word window)

..lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] c¢3 ¢4

Goal: train a classifier that is given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

And assigns each pair a probability:
P(+|w, c)
P(-|lw,c)=1-P(+|w, ¢

Similarity is computed from dot product

Remember: two vectors are similar if they have a high
dot product
> Cosine is just a normalized dot product

So:
> Similarity(w,c) Cw- ¢

We’ll need to normalize to get a probability
> (cosine isn't a probability either)

Turning dot products into probabilities

SIM(W,C) = W * C
To turn this into a probability
We'll use the sigmoid from logistic regression:

P(+|w,c) = o(c-w)= 1_|_6Xp1(_c -
P(—‘W,C) — 1_P(_|_‘ch)
= O(—c-w) = :

How Skip-Gram Classifier computes P(+|w, c)

1
14+exp(—c-w)

P(+|w,c) = o(c-w)=

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

P(‘l“W,Cl;L)

H G(C,‘ - W)
=1

L
Z log G(Ci - W)
=1

log P(+|w,ci.)

Skip-gram classifier: summary

A probabilistic classifier, given
* atesttarget word w

* its context window of L words ¢,

Estimates probability that w occurs in this window based
on similarity of w (embeddings) to ¢,., (embeddings).

To compute this, we just need embeddings for all the
words.

These embeddings we'll need: a set for w, a set for c

1.d
aardvark [eee 1 \

apricot [eee

- W target words

H zebra [eee) |V Y,
~ aardvark ®8) [V|+1)

apricot (eee

e context & noise
words

zebra [(eee] 2V)

Skip-Gram Training data

..lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] ¢3 ¢4

positive examples +
t C

apricot tablespoon
apricot of

apricot jam
apricot a

Skip-Gram Training data

..lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] ¢3 ¢4

positive examples +

t C For each positive
apricot tablespoon examPle we'll grab k
apricot of negative examples,
apricot jam sampling by frequency

apricot a

Skip-Gram Training data

..lemon, a [tablespoon of apricot jam, a] pinch...

cl c2 [target] ¢3 ¢4
positive examples + negative examples -
t C t C t C
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear

apricot a apricot coaxial apricot 1t

Word2vec: how to learn vectors

Given the set of positive and negative training instances,
and an initial set of embedding vectors

The goal of learning is to adjust those word vectors such
that we:

> Maximize the similarity of the target word, context word pairs
(W, C,os) drawn from the positive data

> Minimize the similarity of the (w, c
negative data.

neg) Pairs drawn from the

L oss function for one w with ¢ C

pos’ ~negl -

'Cnegk

Maximize the similarity of the target with the actual context words,
and minimize the similarity of the target with the k negative sampled
non-neighbor words.

LcE

k
—log | P(+|w,cpos) | [P(—|w, cneg,)
i =1

l

k

— [log P(+|w, Cpos +ZlogP —|W, Cneg;)
=1

log P(+|w, Cpos) Zlog (1= P(+|w,Cneg;))

k

— [logo(cpos - W —I—Zlogc —Cpeg. " W)
_ =1

Learning the classifier

How to learn?
> Stochastic gradient descent!

We’ll adjust the word weights to
> make the positive pairs more likely

> and the negative pairs less likely,
> over the entire training set.

Intuition of one step of gradient descent

W <

C -

(aardvark

k=2
Tolstoy

\ zebra

an

move apricot and jam closer,

apriCOt (@0 0| W T ~ IncreaSIng Cpos "W

\
. |
. | . :
‘! “...apricot jam...”
\ zebra [©@@ "\ ,’ '
Y. \
(* aardvark jeee /. . move apricot and matrix apart

jam |eee Cpos

* W

. : decreasing C,;

)
]
]
.o
’

. - “move apricot and Tolstoy apart

decreasing C.., * W

Two sets of embeddings

SGNS learns two sets of embeddings
Target embeddings matrix W
Context embedding matrix C

It's common to just add them together,
representing word / as the vector w. + ¢

Summary: How to learn word2vec (skip-gram)
embeddings

Start with V random d-dimensional vectors as initial
embeddings

Train a classifier based on embedding similarity

°Take a corpus and take pairs of words that co-occur as positive
examples

- Take pairs of words that don't co-occur as negative examples

°Train the classifier to distinguish these by slowly adjusting all
the embeddings to improve the classifier performance

°Throw away the classifier code and keep the embeddings.

Properties of embeddings

The kinds of neighbors depend on window size

Small windows (C= +/- 2) : nearest words are syntactically
similar words in same taxonomy

cHogwarts nearest neighbors are other fictional schools
°Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) : nearest words are related
words in same semantic field

cHogwarts nearest neighbors are Harry Potter world:
cDumbledore, half-blood, Malfoy

The effect of window size on word embeddings

window size: 3 window size: 30 window size: 300
putting able effective crimes diseases tourism
bringing can deliver offences disease visitors
taking unable improve offence vaccine Museums
g1vIing trying strengthen prosecutions | obesity tourist
introducing prepared | improving murder screening citizenship
providing will efficient criminals diabetes Media,
looking willing sustainable crime pregnancy holiday
making wants develop arrested HIV holidays
talking want delivering cases medical music
publishing happy ensuring prosecution | babies Olympics

Examples of words that cluster near one another in word2vec (skip-gram)
embeddings estimated on the House of Commons corpus with different windows.

Source: Goist and Monroe 2018

Analogical relations

The classic parallelogram model of analogical reasoning
(Rumelhart and Abrahamson 1973)

I

To solve: "apple is to tree as grape is to

Add tree — apple to grape to get vine
tree

grape

Analogical relations via parallelogram

The parallelogram method can solve analogies with

both sparse and dense embeddings (Turney and
Littman 2005, Mikolov et al. 2013b)

king — man + woman is close to queen

Paris — France + Italy is close to Rome

For a problem a:a*::b:b*, the parallelogram method is:

b* = argmax distance(x,a* —a+b)
X

05

0.4

0.3

0.2

0.1

Structure in GloVE Embedding space

r heiress

| | _
; niece | * countess
*aunt ; »duchess-
T%ister‘l ; .
/
:, | /I ; // »empress
l I / /
i g " madam g Iy i
| /
> . £
. { nepHew el §
| / / / =
! | / / /!
, 1 ; woman ; loart!
| uncle , / rqueerny /
! brother ’ / | /dduke
[/ S "
| / l J
, / | {emperor
| / !
/ / l
/ / | &
[{sir |
!man L king 2
| | | | | | | | | | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

f you know one thing about word embeddings — vector semantics

man walked
@-. woman O
NA.
O
kin A O swam
d O walking O
queen
—
O
swimming
Male-Female Verb Tense

Canada Spain /.
@ @ 'y
Turkey ,’, ," Roxg
e © O
7 Ottawa Madrid Germany
K
Ankce?ra Russia ,/.
O p”
o
K Berlin
© —
Moscow Japan
Vietnam .
O I China
5 O
¥ O
O Tokyo OK
Hanoi i
Beijing

Demonstrated through “Analogy completion tasks” ...

Man is to woman as king is to ??

Vwoman - Vman+ \/king = r?r? = uneen

lllustration source: https://www.tensorflow.org/tutorials/representation/word2vec

Country-Capital

This is a word embedding for the word “king” (GloVe vector trained on Wikipedia):

[0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 , -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 ,
-0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 , 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 , 0.1961
, -0.13495 , -0.11476 , -0.30344 , 0.41177 , -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 , 1.9927 ,
-0.04234 , -0.64319 , 0.71125 , 0.49159 , 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 , 0.40102 , 1.1685 ,
-1.0137 , -0.21585 , -0.15155 , 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042]

It’s a list of 50 numbers. We can’t tell much by looking at the values. But let’s visualize it a bit so we can compare it
other word vectors. Let’s put all these numbers in one row:

- 05 069 06 0023 06 013 0088 047 D62 031 0077 15 0034 098 068 082 052 032 056 066 02 013 011 03 041 -22 11 11 D34 034 2 0042 064 071 049 017 034 026 085 017 o0& 12 1 022 015 078 091 16 064 051

Let’s color code the cells based on their values (red if they’re close to 2, white if they’re close to 0, blue if they’re close
to -2):

16
08

o- 05 069 06 0023 06 013 0088 047 062 031 0077I00}4I 068 082 4052 032 4056 066 02 013 411 43 04 IIION OMIOOU £64 071 049 017 034 026 085 017 04 II022 015 078 IIO“ 051 -00

0 1 2 3 B 5 6 7 8 9 10 1 12 13 M 15 16 17 18 19 20 21 2 23 24 s % 27 28 2'9 E Y)] 32 33 £ » % 37 B ») 41 42 a4 “ 5 5 @ s)

—1.6

Source: Jay Alammar, 2019, “The lllustrated word2vec

We'll proceed by ignoring the numbers and only looking at the colors to indicate the values of the cells. Let’s now
contrast “King” against other words:

llkingl’
10

llMan"

“Woman”

Source: Jay Alammar, 2019, “The lllustrated word2vec

Here’s another list of examples (compare by vertically scanning the columns looking for columns with similar colors):

queen (| =[] gyl

woman | il RN I
oir U DR DM T L I
boy | {1 I WL O I DO T
man | 1L]
king 1 I | 1]

queen [|f [| || NIyl

water(| [| I (EIF ROCIRND D I

Source: Jay Alammar, 2019, “The lllustrated word2vec

Analogies

I "Words can carry any burden we wish. All that's required is agreement and a tradition upon which to build." ~God Emperor of Dune

The famous examples that show an incredible property of embeddings is the concept of analogies. We can add and
subtract word embeddings and arrive at interesting results. The most famous example is the formula: “king” - “man” +
“‘woman”:

model.most_similar(positive=["king","woman"], negative=["man"))

[('queen’', 0.8523603677749634),
('throne', 0.7664333581924438),
('prince’, 0.7592144012451172),
('daughter’', 0.7473883032798767),
('elizabeth', 0.7460219860076904),
('princess’', 0.7424570322036743),
('kingdom', 0.7337411642074585),
('monarch’', 0.721449077129364),
('eldest’', 0.7184862494468689),
('widow', 0.7099430561065674))

Using the Gensim library in python, we can add and subtract word vectors, and it would find the most similar words to the resulting vector.
The image shows a list of the most similar words, each with its cosine similarity.

Source: Jay Alammar, 2019, “The lllustrated word2vec

We can visualize this analogy as we did previously:

King — man + woman ~= queen

king | | |
man I I
woman I I I

King—man+woman
queen I

The resulting vector from "king-man+woman" doesn't exactly equal "queen”, but "queen" is the closest word to it from the 400,000 word
embeddings we have in this collection.

Source: Jay Alammar, 2019, “The lllustrated word2vec

Caveats with the parallelogram methoa

It only seems to work for frequent words, small

distances and certain relations (relating countries to
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

Understanding analogy is an open area of research
(Peterson et al. 2020)

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift

~30 million books, 1850-1990, Google Books data

a gay (1900s) 0] C solemn
daft spread awful (1850s)
flaunting Sv\/eeti o majestic
tasteful SLocdl SOW awe
S— broadcast (18508)56281WS dread I hensive
frolicsom\e (\ circulated scatter SOOI
witty Y gay (1950s
bright broadcast (1900s) horrible
i | newspapers appallikg terrible
gay isexual fdiiaian awful (1900s) wndEh
gay (1990s) Rasn radio T awful (1 9.9105)
leshian L broadcast (1990s) awfully’ ="

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In NeurlPS, pp. 4349-4357. 2016.

Ask “Paris : France :: Tokyo : x”
o X =Japan

Ask “father : doctor :: mother : x”
°© X =nurse

Ask “man : computer programmer :: woman : x”
> X = homemaker

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

Historical embedding as a tool to study cultural biases

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences 115(16), E3635—E3644.

* Compute a gender or ethnic bias for each adjective: e.g., how
much closer the adjective is to "woman" synonyms than
"man” synonyms, or names of particular ethnicities
* Embeddings for competence adjective (smart, wise,
brilliant, resourceful, thoughtful, logical) are biased toward
men, a bias slowly decreasing 1960-1990

 Embeddings for dehumanizing adjectives (barbaric,
monstrous, bizarre) were biased toward Asians in the
1930s, bias decreasing over the 20" century.

* These match the results of old surveys done in the 1930s

Results of embeddings depend on

Method (word2vec a neural network, GloVe a matrix decomposition)
+ Corpus on which they’re trained.
- What counts as a token (see, fasttext, sense2vec)
- Window size and, for larger windows, “sentence” boundaries
- Slze of embedding space

Extensions include doc2vec, sentence2vec, Swivel, contextual embeddings
ike ELMo

Demonstrations

- Estimating your own embeddings in gensim (Python) [word2vec, fasttext]

+ There Is a simple tutorial on how to estimate your own GloVe embeddings in R
with text2vec here: http://text2vec.org/glove.html

- A tutorial showing how to replicate that example from within quanteda is
here: https://quanteda.io/articles/pkgdown/replication/text2vec.html

http://text2vec.org/glove.html

Using pre-trained embeddings

Assume you have pre-trained embeddings E.
How do you use them in your model?

— Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.

— Option 2: Keep E fixed, but add another hidden layer that is
learned for your task

— Option 3: Learn matrix T € dim(emb)xdim(emb) and use
rows of E’ = ET (adapts all embeddings, not specific words)

— Option 4: Keep E fixed, but learn matrix A e R!Vixdim(emb) gnd

use E'=E + AorE =ET + A (this learns to adapt specific
words)

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 53

Source: Julia Hockenmaier, lllinois, Slides for CS447

