

Day 2 - NLP pipelines and core NLP tasks

Advanced Text as Data: Natural Language Processing Essex Summer School in Social Science Data Analysis

Burt L. Monroe (Instructor) & Sam Bestvater (TA) Pennsylvania State University

July 27, 2021

Today

- NLP "annotation" pipelines (core "processing" tasks for which there are multiple decent solutions)
 - Tokenization / segmentation
 - Normalization / lemmatization / stemming / morphology

 - Dependency parsing •
- Demo: NLP pipelines in R and Python •

Sequence labeling — parts of speech (POS), named entity recognition (NER)

Tokenization and Segmentation

Tokenization

- sentences?
- What's a word / word boundaries.
- Sentence boundaries. •

Text is just a sequence of characters (bytes). How do we split it into words and

White space and punctuation ... what's the problem?

- m.p.h., Ph.D., AT&T, D.C., Mrs.
- R2-D2, SARS-Cov-2, New York-based •
- \$12.52, 07/27/21, @burtmonroe, #blessed, !!!
- we're, couldn't've, l'honneur, j'ai

ullet

- New York, Supreme Court, web site, website
- Vehkehrswegeplanungsbeschleunigungsgesetzen (laws for the acceleration of traffic route planning) •

uygarlaştıramadıklarımızdanmışsınızcasına

Chinese: 我开始写小说 = 我 开始 写 I start(ed) writing

uygar_laş_tır_ama_dık_lar_ımız_dan_mış_sınız_casına (as if you are among those we were not able to cause to be civilized)

小说 novel(s)

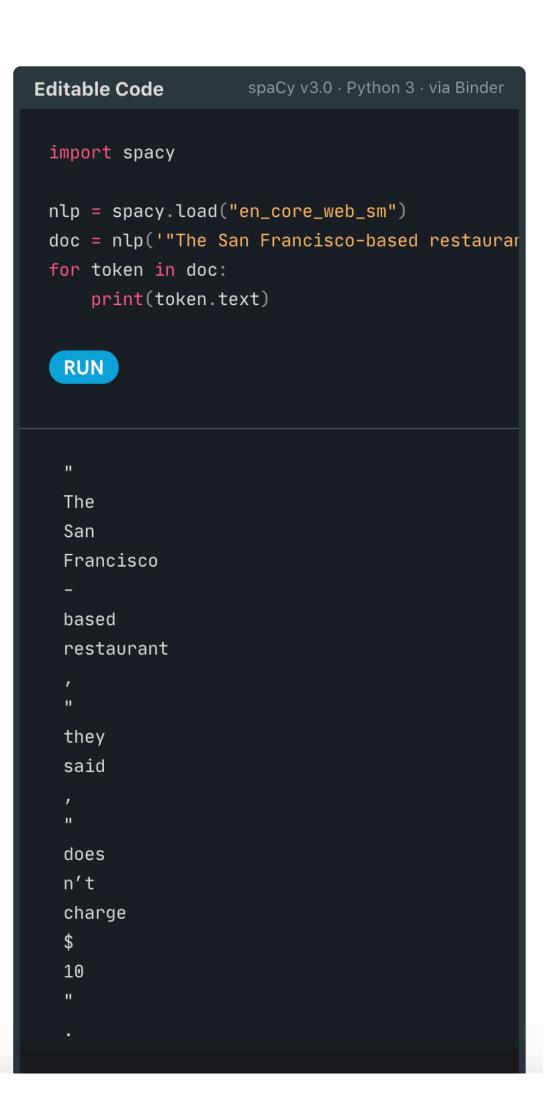
7 characters? (don't use words at all): 姚 明 讲 入 总 决 Yao Ming enter enter overall decision game

姚明进入总决赛 "Yao Ming reaches the finals"

决赛

"The San Francisco-based restaurant," they said, "doesn't charge \$10".

+



spaCy default

Francisco-based Francisco - based

doesn't doesn' "doesn't does

10 S \$10"

"_ The _ San _ Francisco-based _ restaurant _ , _" _ they_said_,_"_does_ n't_ charge_\$_10_"_._

Penn Treebank 3 standard

TreebankWordTokenizer 1. San Francisco-based restaurant charge doesn't WordPunctTokenizer 1. San restaurant Francisco based 10 charge \$ t doesn n't PunktWordTokenizer 1. San Francisco-based restaurant The \$10 doesn't charge WhitespaceTokenizer 1. \$10". they "The San Francisco-based restaurant," said, "doesn't charge pattern 1. The San Francisco-based restaurant they said doesn't charge nltk options

Sentence Tokenization/Segmentation

- For the most part, bag-of-words methods don't care at all about the "sentence." What matters is "what's a term" and "what's a document?" (the latter being an unappreciated question).
- For the most part, traditional NLP doesn't care about anything else.
- But recognizing or defining sentences isn't trivial, either. •

- Dr. Jane R. Smith, Ph.D., lives 3.5 miles from D.C. Mr. J. E. Jones lives in the U.K.
- "The San Francisco-based restaurant," they said, "doesn't charge \$10".
- Very small crowds, you know it, they know it, we all know it. ("One" sentence?) Highly respected man. Four-star general. ("Two" sentences?)
- Can you have a legitimate sentence without a verb? What? Yes!

Tokens, Types, and Vocabulary

- Important difference between tokens and types.
- Types are the unique tokens they constitute the vocabulary, V.
- Zipf's law, etc., ... we have many rare tokens and great sparsity.
- Out-of-vocabulary (OOV) problem
 - <UNK> token
 - The hashing trick
 - Subword tokenization

The hashing trick

- integer, like adding the byte values of their characters.
- clock).
- Use those integers as features. •
- Now every possible token maps to an existing feature/input. •
 - Collisions. Degrade performance and complicate interpretation.

Choose some method for mapping any token (any sequence of bytes) to an

Map that integer into an integer in a fixed range using modulo arithmetic (like a

Many of the state-of-the-art use subword tokenization

- BERT uses WordPiece tokenization ullet
- RoBERTa, GPT-2, XLM use Byte Pair Encoding variants •

bert-base-cased bert-base-uncased		bert-base-multilingual-cased	gpt2	xlm-mlm-en-2048	
Marion	marion	Marion	Mar-ion	marion	
b-ap-tist	baptist	ba-ptis-t	b-apt-ist	baptist	
n-ug-gets	nu-gg-ets	nu-gge-ts	n-uggets	nu-g-gets	

The different tokenization of the words "Marion", "baptist" and "nuggets"

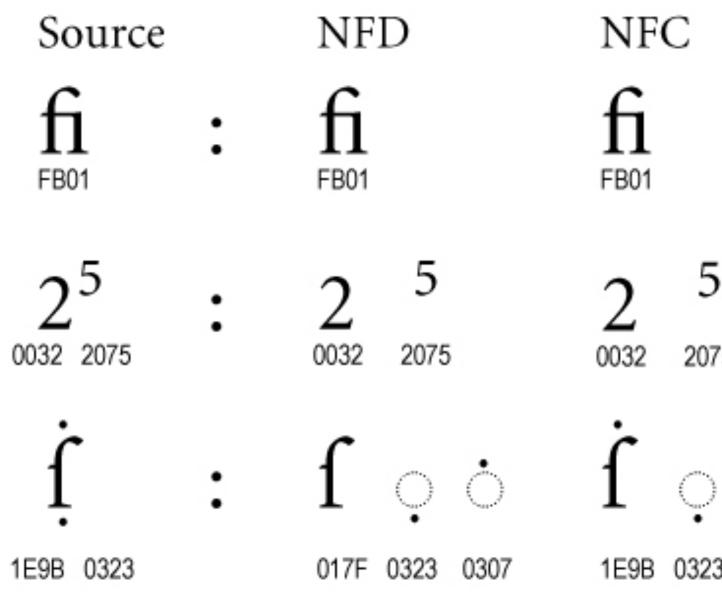
Source: Gergely Nemuth. 2019. "Comparing Transformer Tokenizers."

Are these morphemes (smallest meaning-bearing) units) as often claimed? Does it matter?

Normalization

Normalization of character sets

- for disenfranchising voters with accents in their names!)
- Unicode normalization •



Limited character sets, e.g. ASCII? (Pairs well with "exact match" voter laws

f; f	•
L L L 0066 0069 0066	1 0069
⁵ 2 5 2 0032 0035 0032	5 0035
Sọċ Ş	
0073 0323 0307 1E69	

Normalization - "Pre-processing"

- Case-folding ("lower casing") •
 - Good for search engines
 - Good for topic models?
 - Bad for named entity recognition / information extraction?
 - Do it **after** sentence segmentation!
- Spelling correction? •

Normalization - Morphology

- A wordform is a word fully inflected as it appears in running text
- A lemma is an uninflected root of any given wordform. (so: "A wordform be a word full inflect as it appear run text.")
- Lemmatization tagging a token with its lemma
- Involves morphological parsing. Wordforms consist of morphemes (meaningful subword units)
 - stems core meaning-bearing units generally "free morphemes"
 - affixes prefixes/suffixes, often with grammatical functions. "bound morphemes"
- Stemming: Crude algorithmic approximation

The Porter stemmer at work

This was not the map we found in Billy Bones's chest, but an accurate copy, complete in all things-names and heights and soundings-with the single exception of the red crosses and the written notes.

Thi wa not the map we found in Billi Bone s chest but an accur copi complet in all thing name and height and sound with the singl except of the red cross and the written note

How many different words are there?

Inflection creates different forms of the same word: Verbs: to <u>be</u>, <u>being</u>, I <u>am</u>, you <u>are</u>, he <u>is</u>, I <u>was</u>, Nouns: one <u>book</u>, two <u>books</u>

grace \Rightarrow disgrace \Rightarrow disgraceful \Rightarrow disgracefully

Compounding combines two words into a new word:

Word formation is productive:

New words are subject to all of these processes: Google \Rightarrow Googler, to google, to ungoogle, to misgoogle, Maps service,...

- **Derivation** creates different words from the same lemma:
 - cream \Rightarrow ice cream \Rightarrow ice cream cone \Rightarrow ice cream cone bakery

- googlification, ungooglification, googlified, Google Maps, Google

Source: Julia Hockenmaier, Illinois CS447 slides

Dealing with complex morphology is necessary for many languages

- e.g., the Turkish word:
- Uygarlastiramadiklarimizdanmissinizcasina
- Uygar `civilized' + las `become'
 - + tir `cause' + ama `not able'
 - + dik `past' + lar 'plural'
 - + imiz 'p1pl' + dan 'abl'
 - + mis 'past' + siniz '2pl' + casina 'as if'

`(behaving) as if you are among those whom we could not civilize'

Source: Jurafsky & Martin, SLP3 slides (K. Oflazer p.c.)

N-gram language models

1 gram	 To him swallowed confess hear b rote life have Hill he late speaks; or! a more to l
2 gram	-Why dost stand forth thy canopy, f king. Follow. -What means, sir. I confess she? th
3 gram	–Fly, and will rid me these news of 'tis done.–This shall forbid it should be bran
4 gram	–King Henry. What! I will go seek great banquet serv'd in;–It cannot be but so.

N = 884,647 tokens, |V| = 29,066What about 4-grams? It looks like Shakespeare because it is! Overfitting!!!

both. Which. Of save on trail for are ay device and

- leg less first you enter
- forsooth; he is this palpable hit the King Henry. Live
- hen all sorts, he is trim, captain.
- f price. Therefore the sadness of parting, as they say,
- nded, if renown made it empty.
- the traitor Gloucester. Exeunt some of the watch. A

300,000 bigrams observed out of 844 million possible: 99.96% zeros

Source: Jurafsky & Martin, SLP3

Zeros are a problem

- Generalization training data doesn't look like the test set
- Zeros in the training data *can't* predict nonzeros in the test set.
- Smoothing = Bayesian prior = regularization = "add a little bit to the zeros"
- pseudo-counts / "hallucinated counts"
- Simplistic approach: Laplace smoothing add 1 to everything.

Part-of-Speech Tagging



Universal POS tags from Universal Dependencies (Nivre et al 2016)

	Tag	Description	Example	
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome	
Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday	
	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty	
Open	VERB	words for actions and processes	draw, provide, go	
01	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado	
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello	
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under	
S		spacial, temporal, or other relation		
Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are	
	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but	
Class	DET	Determiner: marks noun phrase properties	a, an, the, this	
	NUM	Numeral	one, two, first, second	
Closed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by	
$\Box lo$	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others	
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which	
		subordinate clause such as a sentential complement		
)r	PUNCT	Punctuation	; , ()	
Other	SYM	Symbols like \$ or emoji	\$, %	
	X	Other	asdf, qwfg	

Table source: Jurafsky and Martin, SLP3, 2021.



Penn Treebank POS tags

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	'S	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD	modal	can, should	RP	particle	up, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where
Figure 8.2 Penn Treebank part-of-speech tags.								

Table source: Jurafsky and Martin, SLP3, 2021.

How difficult is POS tagging in English?

Roughly 15% of word types are ambiguous

- Hence 85% of word types are unambiguous
- Janet is always PROPN, hesitantly is always ADV

But those 15% tend to be very common.

So ~60% of word tokens are ambiguous

E.g., back

earnings growth took a back/ADJ seat a small building in the **back**/NOUN a clear majority of senators **back**/VERB the bill enable the country to buy back/PART debt I was twenty-one **back/ADV** then

POS tagging performance in English

How many tags are correct? (Tag accuracy) • About 97%

- Hasn't changed in the last 10+ years
- HMMs, CRFs, BERT perform similarly. 0
- Human accuracy about the same 0

But baseline is 92%!

- - - Tag every word with its most frequent tag
 - (and tag unknown words as nouns)
- Partly easy because
 - Many words are unambiguous

Baseline is performance of stupidest possible method "Most frequent class baseline" is an important baseline for many tasks

Named Entity Recognition

Named Entities

- Named entity, in its core usage, means anything that can be referred to with a proper name. Most common 4 tags:
 - PER (Person): "Marie Curie" LOC (Location): "New York City" ORG (Organization): "Stanford University" • GPE (Geo-Political Entity): "Boulder, Colorado"
- Often multi-word phrases
- But the term is also extended to things that aren't entities:
 - dates, times, prices

NER output

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [I OC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Why NER is hard

1) Segmentation

- word gets one tag.

2) Type ambiguity

[PER Washington] was born into slavery on the farm of James Burroughs. [ORG Washington] went up 2 games to 1 in the four-game series. Blair arrived in [LOC Washington] for what may well be his last state visit. In June, [GPE Washington] passed a primary seatbelt law.

In POS tagging, no segmentation problem since each

In NER we have to find and segment the entities!

BIO Tagging

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

Words

Jane Villanueva of United Airlines Holding discussed the Chicago route

Now we have one tag per token!!!

BIO Label B-PER I-PER Ο **B-ORG** I-ORG I-ORG Ο 0 **B-LOC** 0 0

BIO Tagging

- B: token that begins a spa
- I: tokens *inside* a span
- O: tokens outside of any s
- # of tags (where n is #enti 10 tag, n B tags, *n* | tags total of 2n+1

n	
n	J
	T
	C
span	J
pan	ŀ
	F
	C
ity types):	t
	(

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	0
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	0
the	0
Chicago	B-LOC
route	0
•	0

BIO Tagging variants: IO and BIOES

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

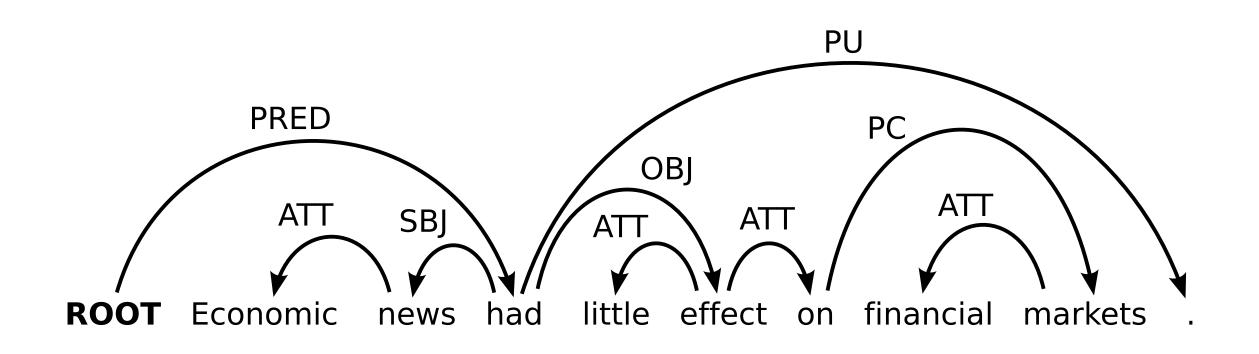
Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	Ο	Ο	Ο
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	Ο	Ο	Ο
the	Ο	Ο	Ο
Chicago	I-LOC	B-LOC	S-LOC
route	Ο	Ο	Ο
•	0	0	0

One common traditional approach to sequence labeling is "maximum entropy" modeling.

Pssst! Hot tip! "Maximum entropy" = "logistic regression"

Dependency parsing (and "universal dependency parsing")

A dependency parse



between two lexical items (words).

- Dependencies are (labeled) asymmetrical binary relations
 - had —OBJ—> effect [effect is the object of had] *effect* —ATT—> *little* [*little* is an attribute of *effect*]
- We typically assume a special ROOT token as word 0

4

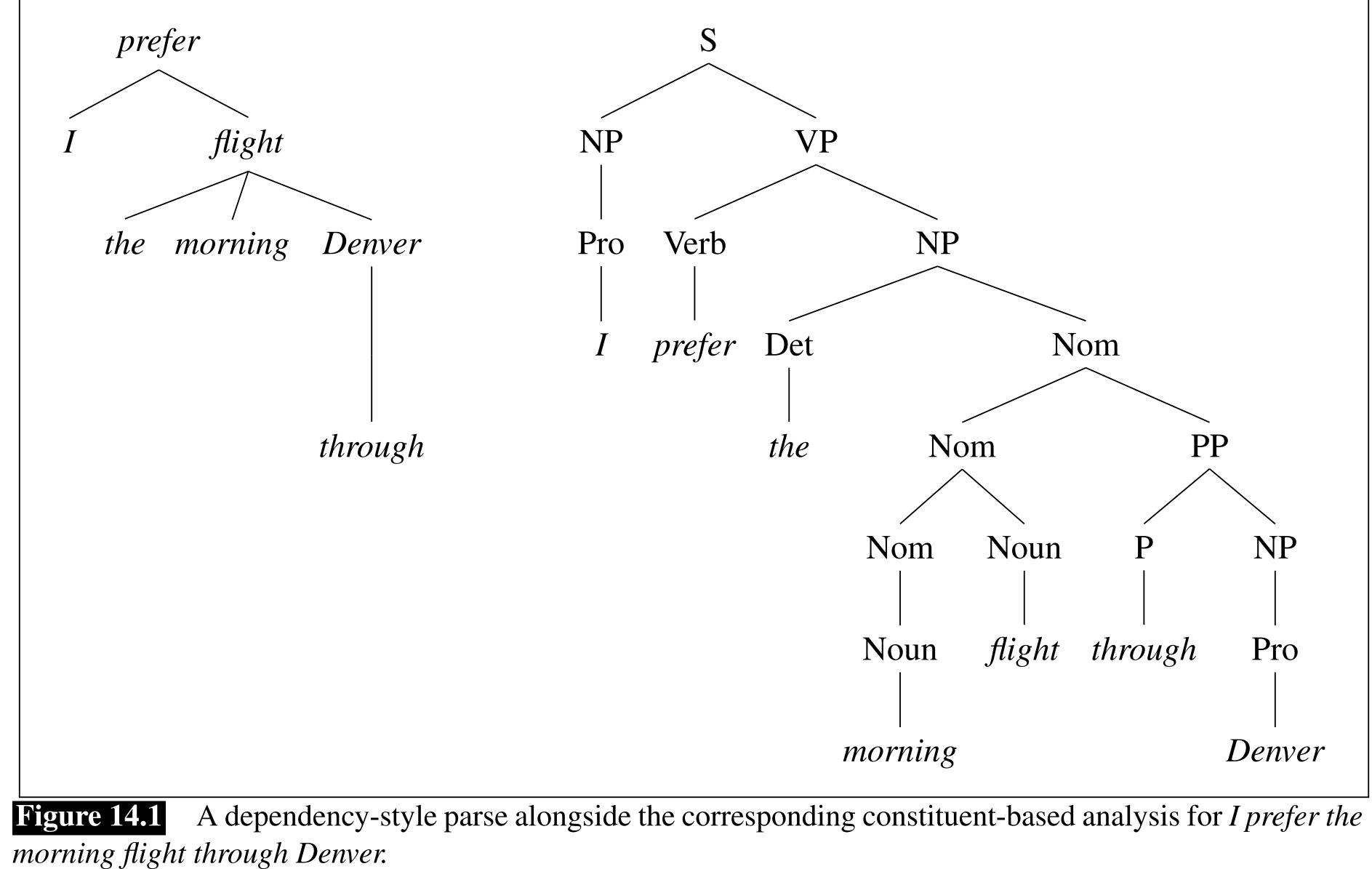


Figure source: Jurafsky and Martin, SLP3, 2021.

The popularity of Dependency Parsing

Currently the main paradigm for syntactic parsing.

Dependencies are easier to use and interpret for downstream tasks than phrase-structure trees.

For languages with free word order, dependencies are more natural than phrase-structure grammars

Dependency treebanks exist for many languages. The Universal Dependencies project has dependency treebanks for dozens of languages that use a similar annotation standard.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 5

Dependency grammar

(most/all?) grammar formalisms.

Dependency grammar assumes that syntactic structure consists *only* of dependencies.

etc.), but some formal equivalences are known.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

- Word-word dependencies are a component of many

 - Many variants. Modern DG began with Tesniere (1959).
- DG is often used for free word order languages.
- DG is purely descriptive (not generative like CFGs)

Source: Julia Hockenmaier, Illinois CS447 slides

6

Dependency trees

Dependencies form a graph over the words in a sentence.

This graph is **connected** (every word is a node) and (typically) acyclic (no loops).

Single-head constraint: Every node has at most one incoming edge (each word has one parent) Together with connectedness, this implies that the graph is a **rooted tree**.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/


```
That means we can
describe the parse tree
of a sentence with one
   tag per token (its
   parent, or "root").
```


Different kinds of dependencies

Head-argument: *eat sushi* Arguments may be obligatory, but can only occur once. The head alone cannot necessarily replace the construction.

Head-modifier: *fresh sushi* Modifiers are optional, and can occur more than once. The head alone can replace the entire construction.

Head-specifier: the sushi

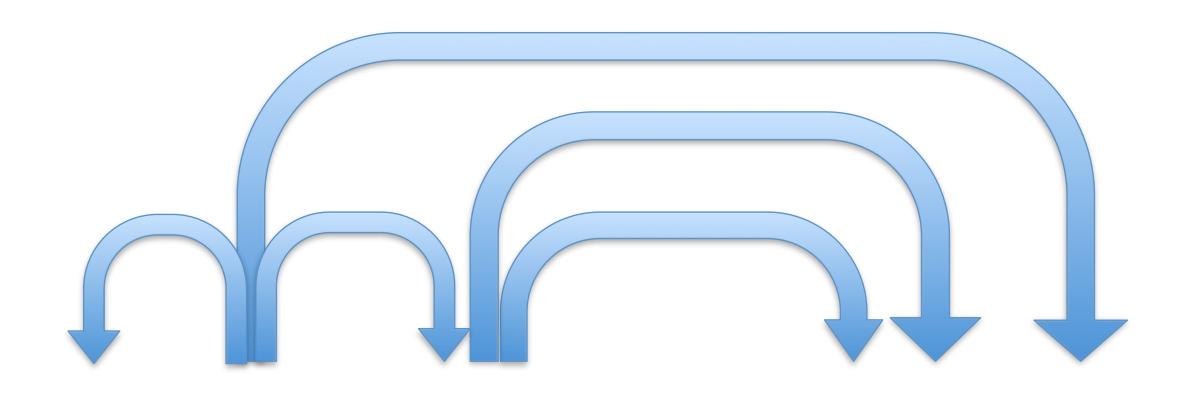
Between function words (e.g. prepositions, determiners) and their arguments. Here, syntactic head \neq semantic head

Coordination: sushi and sashimi Unclear where the head is.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 8

Context-free grammars

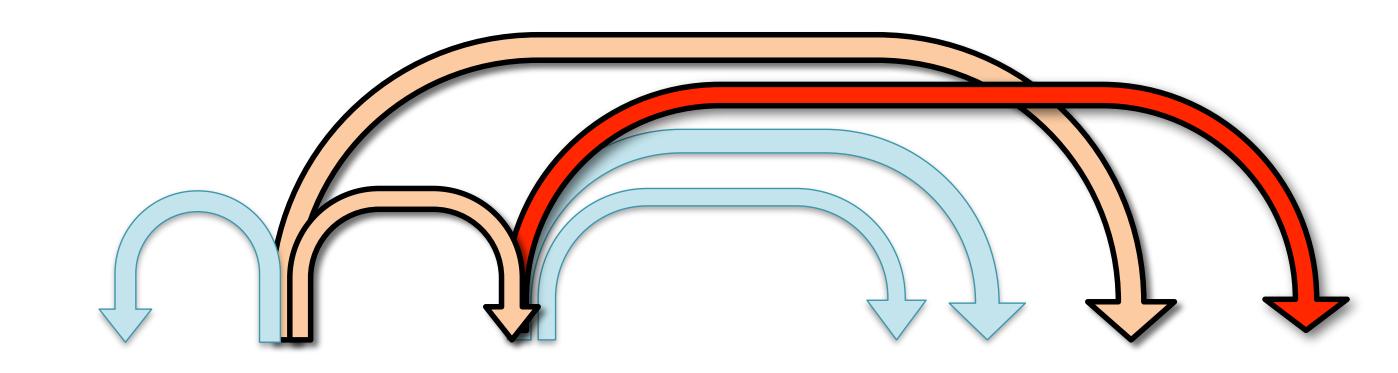
CFGs capture only **nested** dependencies The dependency graph is a **tree** The dependencies **do not cross**



CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 12

Beyond CFGs: Nonprojective dependencies

- Dependencies: tree with crossing branches Arise in the following constructions
 - (Non-local) scrambling (free word order languages) Die Pizza hat Klaus versprochen zu bringen
 - Extraposition (The guy is coming who is wearing a hat)
 - Topicalization (Cheeseburgers, I thought he likes)



CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 13 Source: Julia Hockenmaier, Illinois CS447 slides

Dependency Treebanks

Dependency treebanks exist for many languages: Czech Arabic Turkish Danish Portuguese Estonian

can also be translated into dependency trees

. . . .

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 15

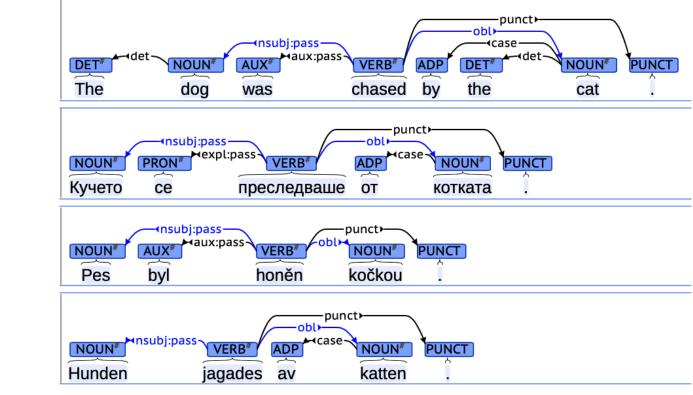
Phrase-structure treebanks (e.g. the Penn Treebank) (although there might be noise in the translation)

Universal Dependencies

37 syntactic relations, intended to be applicable to all languages ("universal"), with slight modifications for each specific language, if necessary. http://universaldependencies.org

Example: "the dog was chased by the cat" in English, Bulgarian, Czech and Swedish: All languages have dependencies corresponding to (*chased*, nsubj-pass, *dog*) (*chased*, obj, *cat*)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 20 Source: Julia Hockenmaier, Illinois CS447 slides



Universal Dependency Relations

["complement"])

adjunct, e.g. for tools etc.), advcl (adverbial clause modifier), aux (auxiliary verb), cop (copula), det (determiner)

appos (appositional modifier)

Coordination: cc (coordinating conjunction), conj (conjunct)

Multiword Expressions: compound (within compound nouns), flat (dates, complex names, etc.), label), punct (to punctuation marks)

- **Nominal core arguments:** nsubj (nominal subject, incl. nsubj-pass) (nominal subject in passive), obj (direct object), iobj (indirect object) **Clausal core arguments:** csubj (clausal subject), ccomp (clausal object)
- **Non-core ("oblique") dependents:** obl (oblique nominal argument or
- **Nominal dependents:** nmod (nominal modifier), amod (adjectival modifier),

```
Function words: case (case markers, prepositions), det (determiners),
Other: root (from ROOT to the head of the sentence), dep (catch-all
```

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 21 Source: Julia Hockenmaier, Illinois CS447 slides

Relation	Examples with head
NSUBJ	United canceled the
DOBJ	United diverted the
	We booked her the f
IOBJ	We booked her the
NMOD	We took the morning
AMOD	Book the cheapest
NUMMOD	Before the storm Je
APPOS	United, a unit of UA
DET	The flight was canc
	Which <i>flight</i> was de
CONJ	We <i>flew</i> to Denver a
CC	We flew to Denver
CASE	Book the flight thro
Figure 14.3	Examples of core Universal

d and dependent

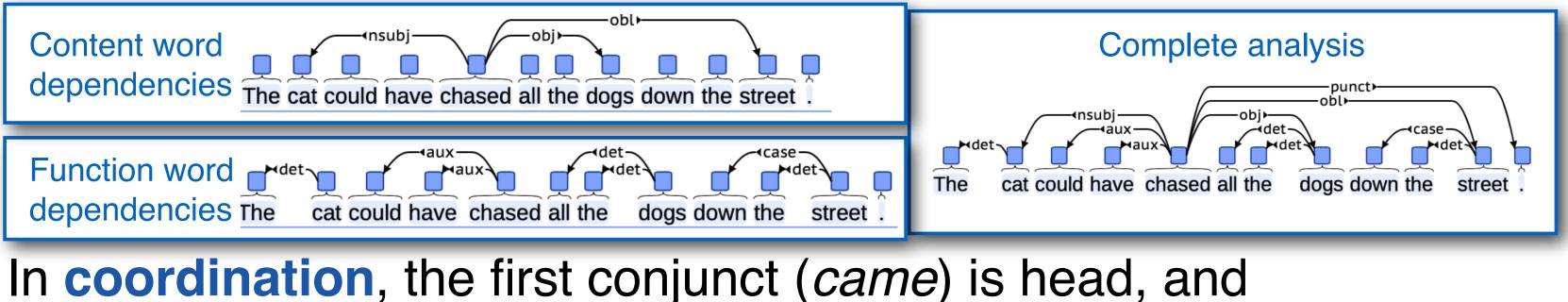
- e flight.
- flight to Reno.
- first **flight** to Miami.
- flight to Miami.
- i**ng** flight.
- flight.
- etBlue canceled 1000 flights.
- AL, matched the fares.
- celed.
- lelayed?
- and **drove** to Steamboat.
- and drove to Steamboat.
- ough Houston.
- Dependency relations.



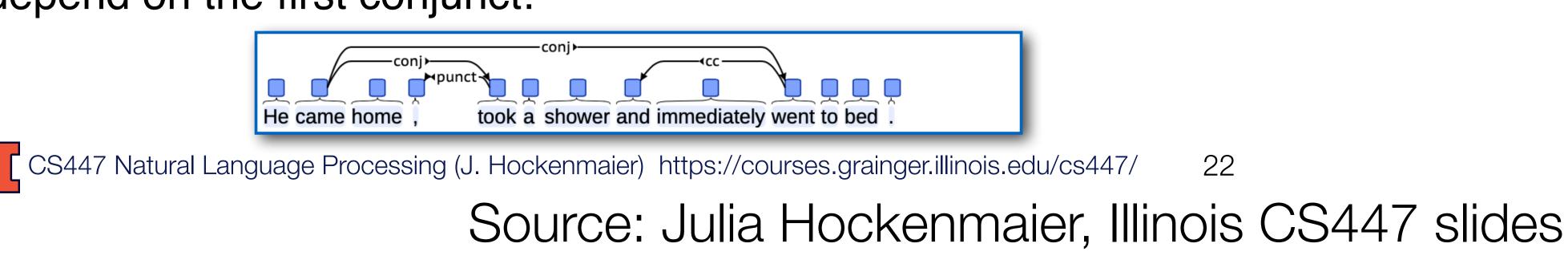
UD conventions: Primacy of content words https://universaldependencies.org/u/overview/syntax.html

(which vary less across languages than function words)

attach to the most closely related content word, and typically don't have dependents



depend on the first conjunct:



- Dependency relations hold primarily between content words
- **Function words** (prepositions, copulas, auxiliaries, determiners)

the coordination (and) and subsequent conjuncts (took, went)

