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Today

• NLP “annotation” pipelines (core “processing” tasks for which there are 
multiple decent solutions) 

• Tokenization / segmentation 

• Normalization / lemmatization / stemming / morphology 

• Sequence labeling — parts of speech (POS), named entity recognition (NER) 

• Dependency parsing 

• Demo: NLP pipelines in R and Python



Tokenization and Segmentation



Tokenization

• Text is just a sequence of characters (bytes). How do we split it into words and 
sentences? 

• What’s a word / word boundaries. 

• Sentence boundaries.



White space and punctuation … what’s the problem?
• m.p.h., Ph.D., AT&T, D.C., Mrs. 

• R2-D2, SARS-Cov-2, New York-based 

• $12.52, 07/27/21, @burtmonroe, #blessed, !!! 

• we’re, couldn’t’ve, l’honneur, j’ai 

• New York, Supreme Court, web site, website 

• Vehkehrswegeplanungsbeschleunigungsgesetzen (laws for the acceleration of traffic route planning) 

• (as if you are among those we were not able to cause to be civilized) 

•

CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

uygarlaştıramadıklarımızdanmışsınızcasına
uygar_laş_tır_ama_dık_lar_ımız_dan_mış_sınız_casına  

“as if you are among those whom we were not able to civilize  
(=cause to become civilized )”
uygar: civilized  
_laş: become
_tır: cause somebody to do something
_ama: not able
_dık: past participle 
_lar: plural
_ımız: 1st person plural possessive (our)
_dan: among (ablative case)
_mış: past 
_sınız: 2nd person plural (you)
_casına: as if (forms an adverb from a verb)
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A Turkish word

K. Oflazer pc to J&M
CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Words aren’t just defined  
by blanks
Problem 1: Compounding

“ice cream”, “website”, “web site”, “New York-based” 

Problem 2: Other writing systems have no blanks
Chinese: ౯୏তٟੜ᧔   =   ౯   ୏ত        ٟ          ੜ᧔ 
                                             I   start(ed)  writing    novel(s)  

Problem 3: Contractions and Clitics 
English: “doesn’t” , “I’m” , 
Italian: “dirglielo” = dir + gli(e) + lo 
                                tell + him   +  it 

9



How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches  finals 

5 words?
姚 明 进入 总 决赛
Yao    Ming    reaches    overall    finals 

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game



"The San Francisco-based restaurant," they said, "doesn’t charge $10".
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Tokenization Standards
Any actual NLP system will assume a particular 
tokenization standard.

Because so much NLP is based on systems that are trained on 
particular corpora (text datasets) that everybody uses, these 
corpora often define a de facto standard.  

Penn Treebank 3 standard:
Input:  
"The San Francisco-based restaurant,"  
  they said, "doesn’t charge $10".  
Output:  
“_ The _ San _ Francisco-based _ restaurant _ , _” _   
they_ said_ ,_ "_ does _  n’t _  charge_ $_ 10 _ " _  . _  

10

Francisco-based 
Francisco - based 

"   doesn’t 
"   doesn’   t 
"doesn’t 
"   does     n’t 

$ 10 " . 
$ 10 " 
$10"  

spaCy default nltk optionsPenn  Treebank 3 standard



Sentence Tokenization/Segmentation

• For the most part, bag-of-words methods don’t care at all about the 
“sentence.” What matters is “what’s a term” and “what’s a document?” (the 
latter being an unappreciated question). 

• For the most part, traditional NLP doesn’t care about anything else. 

• But recognizing or defining sentences isn’t trivial, either.
Dr. Jane R. Smith, Ph.D., lives 3.5 miles from D.C. Mr. J. E. Jones lives in the U.K. 

“The San Francisco-based restaurant,” they said, “doesn’t charge $10”. 

Very small crowds, you know it, they know it, we all know it. (“One” sentence?) 
Highly respected man. Four-star general. (“Two” sentences?) 

Can you have a legitimate sentence without a verb? What? Yes! 



Tokens, Types, and Vocabulary

• Important difference between tokens and types. 

• Types are the unique tokens — they constitute the vocabulary, V. 

• Zipf’s law, etc., … we have many rare tokens and great sparsity. 

• Out-of-vocabulary (OOV) problem 

• <UNK> token 

• The hashing trick 

• Subword tokenization



The hashing trick

• Choose some method for mapping any token (any sequence of bytes) to an 
integer, like adding the byte values of their characters. 

• Map that integer into an integer in a fixed range using modulo arithmetic (like a 
clock). 

• Use those integers as features. 

• Now every possible token maps to an existing feature/input. 

• Collisions. Degrade performance and complicate interpretation.



Many of the state-of-the-art use subword tokenization

• BERT uses WordPiece tokenization 

• RoBERTa, GPT-2, XLM use Byte Pair Encoding variants

Source: Gergely Nemuth. 2019. “Comparing Transformer Tokenizers.”

Are these morphemes 
(smallest meaning-bearing 

units) as often claimed? 
Does it matter?



Normalization



Normalization of character sets

• Limited character sets, e.g. ASCII? (Pairs well with “exact match” voter laws 
for disenfranchising voters with accents in their names!) 

• Unicode normalization



Normalization - “Pre-processing”

•  Case-folding (“lower casing”) 

• Good for search engines 

• Good for topic models? 

• Bad for named entity recognition / information extraction? 

• Do it after sentence segmentation! 

• Spelling correction?



Normalization - Morphology

• A wordform is a word fully inflected as it appears in running text 

• A lemma is an uninflected root of any given wordform. (so: “A wordform be a word full inflect 
as it appear run text.”) 

• Lemmatization — tagging a token with its lemma 

• Involves morphological parsing. Wordforms consist of morphemes (meaningful subword units) 

• stems - core meaning-bearing units - generally “free morphemes” 

• affixes - prefixes/suffixes, often with grammatical functions. “bound morphemes” 

• Stemming: Crude algorithmic approximation



Stemming
Reduce terms to stems, chopping off affixes crudely

This was not the map we 
found in Billy Bones’s
chest, but an accurate 
copy, complete in all 
things-names and heights 
and soundings-with the 
single exception of the 
red crosses and the 
written notes. 

Thi wa not the map we 
found in Billi Bone s chest 
but an accur copi complet
in all thing name and 
height and sound with the 
singl except of the red 
cross and the written note 
. 

Source: Jurafsky & Martin, SLP3 slides

The Porter stemmer at work
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How many different words are there?
Inflection creates different forms of the same word:   

Verbs: to be, being, I am, you are, he is, I was,  
Nouns: one book, two books 

Derivation creates different words from the same lemma:
grace ⇒ disgrace ⇒ disgraceful ⇒ disgracefully  

Compounding combines two words into a new word: 
cream ⇒ ice cream ⇒ ice cream cone ⇒ ice cream cone bakery 

Word formation is productive: 
New words are subject to all of these processes:  
Google ⇒ Googler, to google, to ungoogle, to misgoogle, 
googlification, ungooglification, googlified, Google Maps, Google 
Maps service,... 
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Source: Julia Hockenmaier, Illinois CS447 slides



Dealing with complex morphology is necessary 
for many languages

◦ e.g., the Turkish word:
◦ Uygarlastiramadiklarimizdanmissinizcasina
◦ `(behaving) as if you are among those whom we could not civilize’
◦ Uygar `civilized’ + las `become’ 

+ tir `cause’ + ama `not able’ 
+ dik `past’ + lar ‘plural’
+ imiz ‘p1pl’ + dan ‘abl’ 
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’ 

Source: Jurafsky & Martin, SLP3 slides (K. Oflazer p.c.)



N-gram language models



Approximating Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-

N = 884,647 tokens, |V| = 29,066 
300,000 bigrams observed out of 844 million possible: 99.96% zeros 
What about 4-grams? 
It looks like Shakespeare because it is! Overfitting!!!

Source: Jurafsky & Martin, SLP3



Zeros are a problem

• Generalization - training data doesn’t look like the test set 

• Zeros in the training data *can’t* predict nonzeros in the test set. 

• Smoothing = Bayesian prior = regularization = “add a little bit to the zeros” 

• pseudo-counts / “hallucinated counts” 

• Simplistic approach: Laplace smoothing — add 1 to everything.



Part-of-Speech Tagging



Open class ("content") words

Closed class ("function")

Nouns Verbs

Proper Common

Auxiliary

Main

Adjectives

Adverbs

Prepositions

Particles

Determiners

Conjunctions

Pronouns

… more

… more

Janet
Italy

cat,  cats
mango

eat
went

can
had

old   green   tasty

slowly yesterday

to with

off   up

the some

and or

they its

Numbers

122,312
one

Interjections Ow  hello

Source: Jurafsky & Martin, SLP3 slides



"Universal Dependencies" Tagset
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8.1 (Mostly) English Word Classes

Until now we have been using part-of-speech terms like noun and verb rather freely.
In this section we give more complete definitions. While word classes do have
semantic tendencies—adjectives, for example, often describe properties and nouns
people— parts of speech are defined instead based on their grammatical relationship
with neighboring words or the morphological properties about their affixes.

Tag Description Example

O
pe

n
C

la
ss

ADJ Adjective: noun modifiers describing properties red, young, awesome
ADV Adverb: verb modifiers of time, place, manner very, slowly, home, yesterday
NOUN words for persons, places, things, etc. algorithm, cat, mango, beauty
VERB words for actions and processes draw, provide, go
PROPN Proper noun: name of a person, organization, place, etc.. Regina, IBM, Colorado
INTJ Interjection: exclamation, greeting, yes/no response, etc. oh, um, yes, hello

C
lo

se
d

C
la

ss
W

or
ds

ADP Adposition (Preposition/Postposition): marks a noun’s
spacial, temporal, or other relation

in, on, by under

AUX Auxiliary: helping verb marking tense, aspect, mood, etc., can, may, should, are
CCONJ Coordinating Conjunction: joins two phrases/clauses and, or, but
DET Determiner: marks noun phrase properties a, an, the, this
NUM Numeral one, two, first, second
PART Particle: a preposition-like form used together with a verb up, down, on, off, in, out, at, by
PRON Pronoun: a shorthand for referring to an entity or event she, who, I, others
SCONJ Subordinating Conjunction: joins a main clause with a

subordinate clause such as a sentential complement
that, which

O
th

er PUNCT Punctuation ,̇ , ()
SYM Symbols like $ or emoji $, %
X Other asdf, qwfg

Figure 8.1 The 17 parts of speech in the Universal Dependencies tagset (Nivre et al., 2016a). Features can
be added to make finer-grained distinctions (with properties like number, case, definiteness, and so on).

Parts of speech fall into two broad categories: closed class and open class.closed class
open class Closed classes are those with relatively fixed membership, such as prepositions—

new prepositions are rarely coined. By contrast, nouns and verbs are open classes—
new nouns and verbs like iPhone or to fax are continually being created or borrowed.
Closed class words are generally function words like of, it, and, or you, which tendfunction word
to be very short, occur frequently, and often have structuring uses in grammar.

Four major open classes occur in the languages of the world: nouns (including
proper nouns), verbs, adjectives, and adverbs, as well as the smaller open class of
interjections. English has all five, although not every language does.

Nouns are words for people, places, or things, but include others as well. Com-noun

mon nouns include concrete terms like cat and mango, abstractions like algorithmcommon noun

and beauty, and verb-like terms like pacing as in His pacing to and fro became quite
annoying. Nouns in English can occur with determiners (a goat, its bandwidth)
take possessives (IBM’s annual revenue), and may occur in the plural (goats, abaci).
Many languages, including English, divide common nouns into count nouns andcount noun
mass nouns. Count nouns can occur in the singular and plural (goat/goats, rela-mass noun

tionship/relationships) and can be counted (one goat, two goats). Mass nouns are
used when something is conceptualized as a homogeneous group. So snow, salt, and
communism are not counted (i.e., *two snows or *two communisms). Proper nouns,proper noun

like Regina, Colorado, and IBM, are names of specific persons or entities.

Nivre et al. 2016

Table source: Jurafsky and Martin, SLP3, 2021.

Universal POS tags  
from Universal Dependencies (Nivre et al 2016)



Table source: Jurafsky and Martin, SLP3, 2021.

Penn Treebank POS tags
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question forms, or act as complementizers (Frida, who married Diego. . . ).
Auxiliary verbs mark semantic features of a main verb such as its tense, whetherauxiliary

it is completed (aspect), whether it is negated (polarity), and whether an action is
necessary, possible, suggested, or desired (mood). English auxiliaries include the
copula verb be, the two verbs do and have, forms, as well as modal verbs used tocopula

modal mark the mood associated with the event depicted by the main verb: can indicates
ability or possibility, may permission or possibility, must necessity.

An English-specific tagset, the 45-tag Penn Treebank tagset (Marcus et al., 1993),
shown in Fig. 8.2, has been used to label many syntactically annotated corpora like
the Penn Treebank corpora, so is worth knowing about.

Tag Description Example Tag Description Example Tag Description Example
CC coord. conj. and, but, or NNP proper noun, sing. IBM TO “to” to
CD cardinal number one, two NNPS proper noun, plu. Carolinas UH interjection ah, oops
DT determiner a, the NNS noun, plural llamas VB verb base eat
EX existential ‘there’ there PDT predeterminer all, both VBD verb past tense ate
FW foreign word mea culpa POS possessive ending ’s VBG verb gerund eating
IN preposition/

subordin-conj
of, in, by PRP personal pronoun I, you, he VBN verb past partici-

ple
eaten

JJ adjective yellow PRP$ possess. pronoun your, one’s VBP verb non-3sg-pr eat
JJR comparative adj bigger RB adverb quickly VBZ verb 3sg pres eats
JJS superlative adj wildest RBR comparative adv faster WDT wh-determ. which, that
LS list item marker 1, 2, One RBS superlatv. adv fastest WP wh-pronoun what, who
MD modal can, should RP particle up, off WP$ wh-possess. whose
NN sing or mass noun llama SYM symbol +,%, & WRB wh-adverb how, where
Figure 8.2 Penn Treebank part-of-speech tags.

Below we show some examples with each word tagged according to both the
UD and Penn tagsets. Notice that the Penn tagset distinguishes tense and participles
on verbs, and has a special tag for the existential there construction in English. Note
that since New England Journal of Medicine is a proper noun, both tagsets mark its
component nouns as NNP, including journal and medicine, which might otherwise
be labeled as common nouns (NOUN/NN).

(8.1) There/PRO/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS
there/ADV/RB ./PUNC/.

(8.2) Preliminary/ADJ/JJ findings/NOUN/NNS were/AUX/VBD reported/VERB/VBN
in/ADP/IN today/NOUN/NN ’s/PART/POS New/PROPN/NNP
England/PROPN/NNP Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP

8.2 Part-of-Speech Tagging

Part-of-speech tagging is the process of assigning a part-of-speech to each word inpart-of-speech
tagging

a text. The input is a sequence x1,x2, ...,xn of (tokenized) words and a tagset, and
the output is a sequence y1,y2, ...,yn of tags, each output yi corresponding exactly to
one input xi, as shown in the intuition in Fig. 8.3.

Tagging is a disambiguation task; words are ambiguous —have more than oneambiguous

possible part-of-speech—and the goal is to find the correct tag for the situation.
For example, book can be a verb (book that flight) or a noun (hand me that book).
That can be a determiner (Does that flight serve dinner) or a complementizer (I



How difficult is POS tagging in English?

Roughly 15% of word types are ambiguous
• Hence 85% of word types are unambiguous
• Janet is always PROPN, hesitantly is always ADV 

But those 15% tend to be very common. 
So ~60% of word tokens are ambiguous
E.g., back

earnings growth took a back/ADJ seat
a small building in the back/NOUN
a clear majority of senators back/VERB the bill 
enable the country to buy back/PART debt
I was twenty-one back/ADV then 

Source: Jurafsky & Martin, SLP3 slides



POS tagging performance in English

How many tags are correct?  (Tag accuracy)
◦ About 97%

◦ Hasn't changed in the last 10+ years
◦ HMMs, CRFs, BERT perform similarly .
◦ Human accuracy about the same

But baseline is 92%!
◦ Baseline is performance of stupidest possible method

◦ "Most frequent class baseline" is an important baseline for many tasks
◦ Tag every word with its most frequent tag
◦ (and tag unknown words as nouns)

◦ Partly easy because
◦ Many words are unambiguous

Source: Jurafsky & Martin, SLP3 slides



Named Entity Recognition



Named Entities

◦ Named entity, in its core usage, means anything that 
can be referred to with a proper name. Most common 
4 tags:
◦ PER (Person): “Marie Curie”
◦ LOC (Location): “New York City” 
◦ ORG (Organization): “Stanford University”
◦ GPE (Geo-Political Entity): "Boulder, Colorado"

◦ Often multi-word phrases
◦ But the term is also extended to things that aren't entities:

◦ dates, times, prices
Source: Jurafsky & Martin, SLP3 slides



NER output
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The most-frequent-tag baseline has an accuracy of about 92%1. The baseline
thus differs from the state-of-the-art and human ceiling (97%) by only 5%.

8.3 Named Entities and Named Entity Tagging

Part of speech tagging can tell us that words like Janet, Stanford University, and
Colorado are all proper nouns; being a proper noun is a grammatical property of
these words. But viewed from a semantic perspective, these proper nouns refer to
different kinds of entities: Janet is a person, Stanford University is an organization,..
and Colorado is a location.

A named entity is, roughly speaking, anything that can be referred to with anamed entity

proper name: a person, a location, an organization. The task of named entity recog-
nition (NER) is to find spans of text that constitute proper names and tag the type ofnamed entity

recognition
NER the entity. Four entity tags are most common: PER (person), LOC (location), ORG

(organization), or GPE (geo-political entity). However, the term named entity is
commonly extended to include things that aren’t entities per se, including dates,
times, and other kinds of temporal expressions, and even numerical expressions like
prices. Here’s an example of the output of an NER tagger:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text contains 13 mentions of named entities including 5 organizations, 4 loca-
tions, 2 times, 1 person, and 1 mention of money. Figure 8.5 shows typical generic
named entity types. Many applications will also need to use specific entity types like
proteins, genes, commercial products, or works of art.

Type Tag Sample Categories Example sentences
People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams The IPCC warned about the cyclone.
Location LOC regions, mountains, seas Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity GPE countries, states Palo Alto is raising the fees for parking.

Figure 8.5 A list of generic named entity types with the kinds of entities they refer to.

Named entity tagging is a useful first step in lots of natural language understand-
ing tasks. In sentiment analysis we might want to know a consumer’s sentiment
toward a particular entity. Entities are a useful first stage in question answering,
or for linking text to information in structured knowledge sources like Wikipedia.
And named entity tagging is also central to natural language understanding tasks
of building semantic representations, like extracting events and the relationship be-
tween participants.

Unlike part-of-speech tagging, where there is no segmentation problem since
each word gets one tag, the task of named entity recognition is to find and label

1 In English, on the WSJ corpus, tested on sections 22-24.

Source: Jurafsky & Martin, SLP3 slides



Why NER is hard

1) Segmentation
• In POS tagging, no segmentation problem since each 

word gets one tag.
• In NER we have to find and segment the entities!

2) Type ambiguity

8.3 • NAMED ENTITIES AND NAMED ENTITY TAGGING 7

spans of text, and is difficult partly because of the ambiguity of segmentation; we
need to decide what’s an entity and what isn’t, and where the boundaries are. Indeed,
most words in a text will not be named entities. Another difficulty is caused by type
ambiguity. The mention JFK can refer to a person, the airport in New York, or any
number of schools, bridges, and streets around the United States. Some examples of
this kind of cross-type confusion are given in Figure 8.6.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.

Figure 8.6 Examples of type ambiguities in the use of the name Washington.

The standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows us
to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[PER Jane Villanueva ] of [ORG United] , a unit of [ORG United Airlines
Holding] , said the fare applies to the [LOC Chicago ] route.

Figure 8.7 shows the same excerpt represented with BIO tagging, as well asBIO
variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an I, and any tokens outside of any span of interest are labeled O. While
there is only one O tag, we’ll have distinct B and I tags for each named entity class.
The number of tags is thus 2n+1 tags, where n is the number of entity types. BIO
tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label yi to each input word xi:

Words IO Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O
. O O O
Figure 8.7 NER as a sequence model, showing IO, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.

Source: Jurafsky & Martin, SLP3 slides



BIO Tagging
[PER Jane Villanueva] of [ORG United] , a unit of [ORG United Airlines Holding] , 
said the fare applies to the [LOC Chicago ] route. 
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spans of text, and is difficult partly because of the ambiguity of segmentation; we
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most words in a text will not be named entities. Another difficulty is caused by type
ambiguity. The mention JFK can refer to a person, the airport in New York, or any
number of schools, bridges, and streets around the United States. Some examples of
this kind of cross-type confusion are given in Figure 8.6.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.

Figure 8.6 Examples of type ambiguities in the use of the name Washington.

The standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows us
to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[PER Jane Villanueva ] of [ORG United] , a unit of [ORG United Airlines
Holding] , said the fare applies to the [LOC Chicago ] route.

Figure 8.7 shows the same excerpt represented with BIO tagging, as well asBIO
variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an I, and any tokens outside of any span of interest are labeled O. While
there is only one O tag, we’ll have distinct B and I tags for each named entity class.
The number of tags is thus 2n+1 tags, where n is the number of entity types. BIO
tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label yi to each input word xi:

Words IO Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O
. O O O
Figure 8.7 NER as a sequence model, showing IO, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.
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We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
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Now we have one tag per token!!!
Source: Jurafsky & Martin, SLP3 slides
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# of tags (where n is #entity types):
1 O tag, 
n B tags, 
n I tags
total of 2n+1
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One common traditional approach to sequence labeling is 
“maximum entropy” modeling.



Pssst! Hot tip! “Maximum entropy” = “logistic regression”



Dependency parsing (and “universal dependency parsing”)



Source: Julia Hockenmaier, Illinois CS447 slides
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A dependency parse

4

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dependency structure for an English sentence.

The basic assumption underlying all varieties of dependency grammar is the idea that syntactic
structure essentially consists of words linked by binary, asymmetrical relations called dependency
relations (or dependencies for short). A dependency relation holds between a syntactically subordinate
word, called the dependent, and another word on which it depends, called the head.1 This is illustrated
in figure 1.1, which shows a dependency structure for a simple English sentence, where dependency
relations are represented by arrows pointing from the head to the dependent.2 Moreover, each arrow
has a label, indicating the dependency type. For example, the noun news is a dependent of the verb
had with the dependency type subject (SBJ). By contrast, the noun effect is a dependent of type object
(OBJ) with the same head verb had. Note also that the noun news is itself a syntactic head in relation
to the word Economic, which stands in the attribute (ATT) relation to its head noun.

One peculiarity of the dependency structure in figure 1.1 is that we have inserted an artificial
word root before the first word of the sentence. This is a mere technicality, which simplifies both
formal definitions and computational implementations. In particular, we can normally assume that
every real word of the sentence should have a syntactic head. Thus, instead of saying that the verb
had lacks a syntactic head, we can say that it is a dependent of the artificial word root. In chapter 2,
we will define dependency structures formally as labeled directed graphs, where nodes correspond to
words (including root) and labeled arcs correspond to typed dependency relations.

The information encoded in a dependency structure representation is different from the infor-
mation captured in a phrase structure representation, which is the most widely used type of syntactic
representation in both theoretical and computational linguistics. This can be seen by comparing the
dependency structure in figure 1.1 to a typical phrase structure representation for the same sentence,
shown in figure 1.2. While the dependency structure represents head-dependent relations between
words, classified by functional categories such as subject (SBJ) and object (OBJ), the phrase structure
represents the grouping of words into phrases, classified by structural categories such as noun phrase
(NP) and verb phrase (VP).

1Other terms that are found in the literature are modifier or child, instead of dependent, and governor, regent or parent, instead of
head. Note that, although we will not use the noun modifier, we will use the verb modify when convenient and say that a dependent
modifies its head.

2This is the notational convention that we will adopt throughout the book, but the reader should be warned that there is a competing
tradition in the literature on dependency grammar according to which arrows point from the dependent to the head.

Dependencies are (labeled) asymmetrical binary relations 
between two lexical items (words).
   had     ––OBJ––>  effect  [effect is the object of had]
 effect  ––ATT––> little      [little is an attribute of effect]

We typically assume a special ROOT token as word 0
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Figure 14.1 A dependency-style parse alongside the corresponding constituent-based analysis for I prefer the
morning flight through Denver.

tween predicates and their arguments that makes them directly useful for many ap-
plications such as coreference resolution, question answering and information ex-
traction. Constituent-based approaches to parsing provide similar information, but it
often has to be distilled from the trees via techniques such as the head-finding rules
discussed in Chapter 12.

In the following sections, we’ll discuss in more detail the inventory of relations
used in dependency parsing, as well as the formal basis for these dependency struc-
tures. We’ll then move on to discuss the dominant families of algorithms that are
used to automatically produce these structures. Finally, we’ll discuss how to eval-
uate dependency parsers and point to some of the ways they are used in language
processing applications.

14.1 Dependency Relations

The traditional linguistic notion of grammatical relation provides the basis for thegrammatical
relation

binary relations that comprise these dependency structures. The arguments to these
relations consist of a head and a dependent. We’ve already discussed the notionhead

dependent of heads in Chapter 12 and Appendix C in the context of constituent structures.
There, the head word of a constituent was the central organizing word of a larger
constituent (e.g, the primary noun in a noun phrase, or verb in a verb phrase). The
remaining words in the constituent are either direct, or indirect, dependents of their
head. In dependency-based approaches, the head-dependent relationship is made
explicit by directly linking heads to the words that are immediately dependent on
them, bypassing the need for constituent structures.

In addition to specifying the head-dependent pairs, dependency grammars allow
us to further classify the kinds of grammatical relations, or grammatical function,grammatical

function

Figure source: Jurafsky and Martin, SLP3, 2021.
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The popularity of Dependency Parsing
Currently the main paradigm for syntactic parsing. 

Dependencies are easier to use and interpret  
for downstream tasks than phrase-structure trees. 

For languages with free word order, dependencies  
are more natural than phrase-structure grammars 

Dependency treebanks exist for many languages. 
The Universal Dependencies project has dependency 
treebanks for dozens of languages that use a similar 
annotation standard.

5

Source: Julia Hockenmaier, Illinois CS447 slides
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Dependency grammar
Word-word dependencies are a component of many 
(most/all?) grammar formalisms. 

Dependency grammar assumes that syntactic 
structure consists only of dependencies.

Many variants. Modern DG began with Tesniere (1959). 

DG is often used for free word order languages. 

DG is purely descriptive (not generative like CFGs 
etc.), but some formal equivalences are known.

6

Source: Julia Hockenmaier, Illinois CS447 slides
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Dependency trees
Dependencies form a graph over the words  
in a sentence.
 
This graph is connected (every word is a node) 
and (typically) acyclic (no loops). 

Single-head constraint:  
Every node has at most one incoming edge  
(each word has one parent)
Together with connectedness, this implies that the 
graph is a rooted tree. 

7

Source: Julia Hockenmaier, Illinois CS447 slides

That means we can 
describe the parse tree 
of a sentence with one 

tag per token (its 
parent, or “root”).
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Head-argument:   eat sushi  
Arguments may be obligatory, but can only occur once. 
The head alone cannot necessarily replace the construction. 

Head-modifier:  fresh sushi  
Modifiers are optional, and can occur more than once. 
The head alone can replace the entire construction. 

Head-specifier: the sushi  
Between function words (e.g. prepositions, determiners) 
and their arguments. Here, syntactic head ≠ semantic head  

Coordination: sushi and sashimi  
Unclear where the head is. 

Different kinds of dependencies

8

?

Source: Julia Hockenmaier, Illinois CS447 slides
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Context-free grammars
CFGs capture only nested dependencies

The dependency graph is a tree
The dependencies do not cross 

12

Source: Julia Hockenmaier, Illinois CS447 slides
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Beyond CFGs:  
Nonprojective dependencies
Dependencies: tree with crossing branches

Arise in the following constructions
- (Non-local) scrambling (free word order languages)  

Die Pizza hat Klaus versprochen zu bringen
- Extraposition (The guy is coming who is wearing a hat)
- Topicalization (Cheeseburgers, I thought he likes)

13

Source: Julia Hockenmaier, Illinois CS447 slides
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Dependency Treebanks
Dependency treebanks exist for many languages:

Czech
Arabic
Turkish
Danish
Portuguese
Estonian
.... 

Phrase-structure treebanks (e.g. the Penn Treebank) 
can also be translated into dependency trees  
(although there might be noise in the translation)

15

Source: Julia Hockenmaier, Illinois CS447 slides
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Universal Dependencies
37 syntactic relations, intended to be applicable to all 
languages (“universal”), with slight modifications for 
each specific language, if necessary. 

http://universaldependencies.org 

Example:     “the dog was chased by the cat”  
in English, Bulgarian, Czech and Swedish: 
All languages have dependencies corresponding to   
    (chased, nsubj-pass, dog) 
    (chased, obj, cat) 

20

Source: Julia Hockenmaier, Illinois CS447 slides
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Universal Dependency Relations
Nominal core arguments: nsubj (nominal subject, incl. nsubj-pass 
(nominal subject in passive), obj (direct object), iobj (indirect object)
Clausal core arguments: csubj (clausal subject), ccomp (clausal object 
[“complement”])
Non-core (“oblique”) dependents: obl (oblique nominal argument or 
adjunct, e.g. for tools etc.), advcl (adverbial clause modifier),  
aux (auxiliary verb), cop (copula), det (determiner)
Nominal dependents: nmod (nominal modifier), amod (adjectival modifier), 
appos (appositional modifier) 
Function words: case (case markers, prepositions), det (determiners),
Coordination:  cc (coordinating conjunction), conj (conjunct)
Multiword Expressions: compound (within compound nouns),  
flat (dates, complex names, etc.), 
Other: root (from ROOT to the head of the sentence), dep (catch-all 
label), punct (to punctuation marks)

21

Source: Julia Hockenmaier, Illinois CS447 slides



14.2 • DEPENDENCY FORMALISMS 283

Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
IOBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.
Figure 14.3 Examples of core Universal Dependency relations.

14.2 Dependency Formalisms

In their most general form, the dependency structures we’re discussing are simply
directed graphs. That is, structures G = (V,A) consisting of a set of vertices V , and
a set of ordered pairs of vertices A, which we’ll refer to as arcs.

For the most part we will assume that the set of vertices, V , corresponds exactly
to the set of words in a given sentence. However, they might also correspond to
punctuation, or when dealing with morphologically complex languages the set of
vertices might consist of stems and affixes. The set of arcs, A, captures the head-
dependent and grammatical function relationships between the elements in V .

Further constraints on these dependency structures are specific to the underlying
grammatical theory or formalism. Among the more frequent restrictions are that the
structures must be connected, have a designated root node, and be acyclic or planar.
Of most relevance to the parsing approaches discussed in this chapter is the common,
computationally-motivated, restriction to rooted trees. That is, a dependency treedependency

tree
is a directed graph that satisfies the following constraints:

1. There is a single designated root node that has no incoming arcs.
2. With the exception of the root node, each vertex has exactly one incoming arc.
3. There is a unique path from the root node to each vertex in V .

Taken together, these constraints ensure that each word has a single head, that the
dependency structure is connected, and that there is a single root node from which
one can follow a unique directed path to each of the words in the sentence.

14.2.1 Projectivity
The notion of projectivity imposes an additional constraint that is derived from the
order of the words in the input. An arc from a head to a dependent is said to be
projective if there is a path from the head to every word that lies between the head
and the dependent in the sentence. A dependency tree is then said to be projective
if all the arcs that make it up are projective. All the dependency trees we’ve seen
thus far have been projective. There are, however, many perfectly valid constructions
which lead to non-projective trees, particularly in languages with a relatively flexible
word order.

Table source: Jurafsky and Martin, SLP3, 2021.
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Complete analysis

Function word  
dependencies

Content word  
dependencies

UD conventions: Primacy of content words

22

https://universaldependencies.org/u/overview/syntax.html

Dependency relations hold primarily between content words 
(which vary less across languages than function words) 

Function words (prepositions, copulas, auxiliaries, determiners)   
attach to the most closely related content word,  
and typically don’t have dependents 
 
 
 

In coordination, the first conjunct (came) is head, and  
the coordination (and) and subsequent conjuncts (took, went) 
depend on the first conjunct:

Source: Julia Hockenmaier, Illinois CS447 slides


